The linear relationship between gross primary productivity (GPP) and evapotranspiration (ET), evidenced by site-scale observations, is well recognized as an indicator of the close interactions between carbon and hydrologic processes in terrestrial ecosystems. However, it is not clear whether this relationship holds at the catchment scale, and if so, what are the controlling factors of its slope and intercept. This study proposes and examines a generalized GPP-ET relationship at 380 near-natural catchments across various climatic and landscape conditions in the contiguous U.S., based on monthly remote sensing-based GPP data, vegetation phenology, and several hydrometeorological variables. We demonstrate the validity of this GPP-ET relationship at the catchment scale, with Pearson’s r ≥ 0.6 for 97% of the 380 catchments. Furthermore, we propose a regionalization strategy for estimating the slope and intercept of the generalized GPP-ET relationship at the catchment scale by linking the parameter values a priori with hydrometeorological data. We validate the monthly GPP predicted from the relationship and regionalized parameters against remote-sensing based GPP product, yielding Kling-Gupta Efficient (KGE) values ≥ 0.5 for 92% of the catchments. Finally, we verify the relationship and its parameter regionalization at 35 AmeriFlux sites with KGE ≥ 0.5 for 25 sites, demonstrating that the new relationship is transferable across the site, catchment, and regional scales. The relationship will be valuable for diagnosing coupled water–carbon simulations in land surface and Earth system models and constraining remote-sensing based estimation of monthly ET.

Yushu Xia

and 33 more

Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics, as well as limited data availability. We developed a Rangeland Carbon Tracking and Management (RCTM) system to track long-term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable datasets with algorithms representing terrestrial C-cycle processes. Bayesian calibration was conducted using quality-controlled C flux datasets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern U.S. rangelands, to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass-shrub mixture, and grass-tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE < 390 g C m-2) than net ecosystem exchange of CO2 (NEE) (R2 > 0.4, RMSE < 180 g C m-2), and captured the spatial variability of surface SOC stocks with R2 = 0.6 when validated against SOC measurements across 13 NEON sites. Our RCTM simulations indicated slightly enhanced SOC stocks during the past decade, which is mainly driven by an increase in precipitation. Regression analysis identified slope, soil texture, and climate factors as the main controls on model-predicted C sequestration rate. Future efforts to refine the RCTM system will benefit from long-term network-based monitoring of rangeland vegetation biomass, C fluxes, and SOC stocks.

Benjamin Poulter

and 20 more

Imaging spectroscopy is a remote-sensing technique that retrieves reflectances across visible to shortwave infrared wavelengths at high spectral resolution (<10 nm). Spectroscopic reflectance data provide novel information on the properties of the Earth’s terrestrial and aquatic surfaces. Until recently, imaging spectroscopy missions were limited spatially and temporally using airborne instruments, such as the Next Generation Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), providing the main source of observations. Here, we present a land-surface modeling framework to help support end-to-end traceability of emerging imaging spectroscopy spaceborne missions. The LPJ-wsl dynamic global vegetation model is coupled with the canopy radiative transfer model, PROSAIL, to generate global, gridded, daily visible to shortwave infrared (VSWIR) spectra. LPJ-wsl variables are cross-walked to meet required PROSAIL parameters, which include leaf structure, Chlorophyll a+b, brown pigment, equivalent water thickness, and dry matter content. Simulated spectra are compared to a boreal forest site, a temperate forest, managed grassland, and a tropical forest site using reflectance data from canopy imagers mounted on towers and from air and spaceborne platforms. We find that canopy nitrogen and leaf-area index are the most uncertain variables in translating LPJ-wsl to PROSAIL parameters but at first order, LPJ-PROSAIL successfully simulates surface reflectance dynamics. Future work will optimize functional relationships required for improving PROSAIL parameters and include the development of the LPJ-model to represent improvements in leaf water content and canopy nitrogen. The LPJ-PROSAIL model can support missions such as NASA’s Surface Biology and Geology (SBG) and higher-level modeled products.