Ctenostomes are a group of gymnolaemate bryozoans with an uncalcified chitinous body wall having few external, skeletal characters. Hence, species identification is challenging and their systematics remain poorly understood, even more so when they exhibit an endolithic (boring) lifestyle. Currently, there are four Recent families of endolithic bryozoans that live inside in mineralized substrates like mollusk shells. In particular, Penetrantiidae Silén, 1946 has received considerable attention and its systematic affinity to either cheilostomes or ctenostomes has been debated. Species delimitation of penetrantiids remains difficult, owing to a high degree of colonial and zooidal plasticity. Consequently, an additional molecular approach is essential to unravel the systematics of penetrantiids, their phylogenetic placement and their species diversity. We therefore sequenced the mitochondrial (mt) genomes and two nuclear markers of 27 ctenostome species including nine penetrantiids. Our phylogeny supports the Penetrantiidae as a monophyletic group placed as sister taxa to the remaining ctenostomes alongside paludicellids and arachnoidids. Our results also suggest that the endolithic lifestyle evolved at least twice independently within ctenostomes, since the boring families Terebriporidae d’Orbigny, 1847 and Penetrantiidae are well separated. Ctenostome paraphyly is supported by our data, as the cheilostomes nest within them. A Multiporata clade is also well supported, including the former victorelloid genus Sundanella. Altogether, this study provides new insights into ctenostome systematics, assists with species delimitation and contributes to our understanding of the bryozoan tree of life.