Zhi-Gu Li

and 4 more

Relativistic electrons in the radiation belts can be transported as a result of wave-particle interactions (WPI) with ultra-low frequency (ULF) waves. Such WPI are often assumed to be diffusive, parametric models for the radial diffusion coefficient often being used to assess the rates of radial transport. However, these WPI transition from initially coherent interactions to the diffusive regime over a finite time, this time depending on the ULF wave power spectral density, and local resonance conditions. Further, in the real system on the timescales of a single storm, interactions with finite discrete modes may be more realistic. Here, we use a particle-tracing model to simulate the dynamics of outer radiation belt electrons in the presence of a finite number of discrete frequency modes. We characterize the point of the onset of diffusion as a transition from separate discrete interactions in terms of wave parameters by using the “two-thirds” overlap criterion (Lichtenberg & Lieberman, 1992), a comparison between the distance between, and the widths of, the electron’s primary resonant islands in phase space. Further, we find the particle decorrelation time in our model system with typical parameters to be on the timescale of hours, which only afterwards can the system be modeled by one-dimensional radial diffusion. Direct comparison of particle transport rates in our model with previous analytic diffusion coefficient formulations show good agreement at times beyond the decorrelation time. These results are critical for determining the time periods and conditions under which ULF wave radial diffusion theory can be applied.

Zhi Gu Li

and 2 more

A drift-diffusion model is used to simulate the low-altitude electron distribution, accounting for azimuthal drift, pitch angle diffusion, and atmospheric backscattering effects during a rapid electron dropout event on August 21st, 2013, at L=4.5. Additional external loss effects are introduced during times when the low-altitude electron distribution cannot be reproduced by diffusion alone. The model utilizes low-altitude electron count rate data from five POES/MetOp satellites to quantify pitch angle diffusion rates. Low-altitude data provides critical constraint on the model because it includes the drift loss cone region where the electron distribution in longitude is highly dependent on the balance between azimuthal drift and pitch angle diffusion. Furthermore, a newly derived angular response function for the detectors onboard POES/MetOp is employed to accurately incorporate the bounce loss cone measurements, which have been previously contaminated by electrons from outside the nominal field-of-view. While constrained by low-altitude data, the model also shows reasonable agreement with high-altitude data. Pitch angle diffusion rates during the event are quantified and are faster at lower energies. Precipitation is determined to account for all of the total loss observed for 350 keV electrons, 76% for 600 keV and 45% for 900 keV. Predictions made in the MeV range are deemed unreliable as the integral energy channels E3 and P6 fail to provide the necessary constraint at relativistic energies.