Evan Krell

and 4 more

Geoscience applications have been using sophisticated machine learning methods to model complex phenomena. These models are described as black boxes since it is unclear what relationships are learned. Models may exploit spurious associations that exist in the data. The lack of transparency may limit user’s trust, causing them to avoid high performance models since they cannot verify that it has learned realistic strategies. EXplainable Artificial Intelligence (XAI) is a developing research area for investigating how models make their decisions. However, XAI methods are sensitive to feature correlations. This makes XAI challenging for high-dimensional models whose input rasters may have extensive spatial-temporal autocorrelation. Since many geospatial applications rely on complex models for target performance, a recommendation is to combine raster elements into semantically meaningful feature groups. However, it is challenging to determine how best to combine raster elements. Here, we explore the explanation sensitivity to grouping scheme. Experiments are performed on FogNet, a complex deep learning model that uses 3D Convolutional Neural Networks (CNN) for coastal fog prediction. We demonstrate that explanations can be combined with domain knowledge to generate hypotheses about the model. Meteorological analysis of the XAI output reveal FogNet’s use of channels that capture relationships related to fog development, contributing to good overall model performance. However, analyses also reveal several deficiencies, including the reliance on channels and channel spatial patterns that correlate to the predominate fog type in the dataset, to make predictions of all fog types. Strategies to improve FogNet performance and trustworthiness are presented.

Laha Ale

and 4 more

Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods. Mobile Edge Computing (MEC) has been regarded as a promising paradigm to reduce service latency for data processing in Internet of Things, by provisioning computing resources at network edge. In this work, we jointly optimize the task partitioning and computational power allocation for computation offloading in a dynamic environment with multiple IoT devices and multiple edge servers. We formulate the problem as a Markov decision process with constrained hybrid action space, which cannot be well handled by existing deep reinforcement learning (DRL) algorithms. Therefore, we develop a novel Deep Reinforcement Learning called Dirichlet Deep Deterministic Policy Gradient (D3PG), which is built on Deep Deterministic Policy Gradient (DDPG) to solve the problem. The developed model can learn to solve multi-objective optimization, including maximizing the number of tasks processed before expiration and minimizing the energy cost and service latency. More importantly, D3PG can effectively deal with constrained distribution-continuous hybrid action space, where the distribution variables are for the task partitioning and offloading, while the continuous variables are for computational frequency control. Moreover, the D3PG can address many similar issues in MEC and general reinforcement learning problems. Extensive simulation results show that the proposed D3PG outperforms the state-of-art methods.