All Authorea-powered sites will be offline 6am-10am EDT Tuesday 11 June
for Essential Maintenance. We apologise for any inconvenience.

Diep Nguyen

and 14 more

Background: Highly pathogenic avian influenza A(H5) human infections are a global concern, with many A(H5) human cases detected in Vietnam, including a case in October 2022. Using avian influenza virus surveillance from March 2017‒September 2022, we described the percent of pooled samples that were positive for avian influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses in live bird markets in Vietnam. Methods: Monthly at each LBM, 30 poultry oropharyngeal swab specimens and five environmental samples were collected. Samples were pooled in groups of five and tested for influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses by real-time reverse-transcription polymerase chain reaction. Trends in the percent of pooled samples that were positive for avian influenza were summarized by LBM characteristics and time and compared to the number of passively detected avian influenza outbreaks using Spearman’s rank correlation. Results: A total of 25,774 pooled samples were collected through active surveillance at 167 LBMs in 24 provinces; 36.9% of pooled samples were positive for influenza A, 3.6% A(H5), 1.9% A(H5N1), 1.1% A(H5N6), and 0.2% A(H5N8). Influenza A(H5) viruses were identified January–December and at least once in 91.7% of sampled provinces. In 246 A(H5) outbreaks in poultry; 20.3% were influenza A(H5N1), 60.2% A(H5N6), and 19.5% A(H5N8); outbreaks did not correlate with active surveillance. Conclusions: In Vietnam, influenza A(H5) viruses were detected by active surveillance in LBMs year-round and in most provinces sampled. In addition to outbreak reporting, active surveillance for A(H5) viruses in settings with high potential for animal-to-human spillover can provide situational awareness.

Nathaniel Lewis

and 9 more

Background: Knowledge of the specific dynamics of influenza introduction and spread in university settings is limited. Methods: Persons with acute respiratory illness symptoms received influenza testing by molecular assay during October 6–November 23, 2022. Viral sequencing and phylogenetic analysis were conducted on nasal swab samples from case-patients. Case-control analysis of a voluntary survey of persons tested was used to identify factors associated with influenza; logistic regression was conducted to calculate odds ratios and 95% CIs. A subset of case-patients tested during the first month of the outbreak was interviewed to identify sources of introduction and early spread. Results: Among 3,268 persons tested, 788 (24.1%) tested positive for influenza; 744 (22.8%) were included in the survey analysis. All 380 sequenced specimens were influenza A (H3N2) virus clade 3C.2a1b.2a.2, suggesting rapid transmission. Influenza (OR [95% CI]) was associated with indoor congregate dining (1.43 [1.002–2.03]), attending large gatherings indoors (1.83 [1.26–2.66]) or outdoors (2.33 [1.64–3.31]), and varied by residence type (apartment with ≥1 roommate: 2.93 [1.21–7.11], residence hall room alone: 4.18 [1.31–13.31], or with roommate: 6.09 [2.46–15.06], or fraternity/sorority house: 15.13 [4.30–53.21], all compared with single-dwelling apartment). Odds of influenza were lower among persons who left campus for ≥1 day during the week before their influenza test (0.49 [0.32–0.75]). Almost all early cases reported attending large events. Conclusions: Congregate living and activity settings on university campuses can lead to rapid spread of influenza following introduction. Isolating following a positive influenza test or administering antiviral medications to exposed persons may help mitigate outbreaks.