Ronny Lauerwald

and 42 more

In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr-1 (global warming potential on 100 year horizon), and are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems are a net GHG sink of 0.9 Pg CO2-eq. yr-1, dominated by a CO2 sink. For CH4 and N2O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO2-eq. yr-1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. In particular, we identified a decreasing sink strength over Scandinavia, which can be attributed to an intensification of forest management. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO2 and of all GHGs combined.

Xuhui Wang

and 39 more

East Asia (China, Japan, Koreas and Mongolia) has been the world’s economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid-century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long-lived greenhouse gases (CO2, CH4 and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint bottom-up and top-down approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between 196.9 ± 527.0 Tg CO2eq yr-1 (the top-down approach) and -20.8 ± 205.5 Tg CO2eq yr-1 (the bottom-up approach) during 2000-2019. This net GHG emission includes a large land CO2 sink (-1251.3 ± 456.9 Tg CO2 yr-1 based on the top-down approach and -1356.1 ± 155.6 Tg CO2 yr-1 based on the bottom-up approach), which is being fully offset by biogenic CH4 and N2O emissions, predominantly coming from the agricultural sector. Emerging data sources and modelling capacities have helped achieve agreement between the top-down and bottom-up approaches to within 20% for all three GHGs, but sizeable uncertainties remain in several flux terms. For example, the reported CO2 flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr-1 to a net sink of ~-700 Tg CO2 yr-1.