So Ozawa

and 2 more

Geophysical and geological studies provide evidence for cyclic changes in fault-zone pore fluid pressure that synchronize with or at least modulate seismic cycles. A hypothesized mechanism for this behavior is fault valving arising from temporal changes in fault zone permeability. In our study, we investigate the coupled dynamics of rate and state friction, along-fault fluid flow, and permeability evolution. Permeability decreases with time, and increases with slip. Linear stability analysis shows that steady slip with constant fluid flow along the fault zone is unstable to perturbations, even for velocity-strengthening friction with no state evolution, if the background flow is sufficiently high. We refer to this instability as the “fault valve instability.’ The propagation speed of the fluid pressure and slip pulse can be much higher than expected from linear pressure diffusion, and it scales with permeability enhancement. Two-dimensional simulations with spatially uniform properties show that the fault valve instability develops into slow slip events, in the form of aseismic slip pulses that propagate in the direction of fluid flow. We also perform earthquake sequence simulations on a megathrust fault, taking into account depth-dependent frictional and hydrological properties. The simulations produce quasi-periodic slow slip events from the fault valve instability below the seismogenic zone, in both velocity-weakening and velocity-strengthening regions, for a wide range of effective normal stresses. A separation of slow slip events from the seismogenic zone, which is observed in some subduction zones, is reproduced when assuming a fluid sink around the mantle wedge corner.

Yuyun Yang

and 1 more

Fluids influence fault zone strength and the occurrence of earthquakes, slow slip events, and aseismic slip. We introduce an earthquake sequence model with fault zone fluid transport, accounting for elastic, viscous, and plastic porosity evolution, with permeability having a power-law dependence on porosity. Fluids, sourced at a constant rate below the seismogenic zone, ascend along the fault. While the modeling is done for a vertical strike-slip fault with 2D antiplane shear deformation, the general behavior and processes are anticipated to apply also to subduction zones. The model produces large earthquakes in the seismogenic zone, whose recurrence interval is controlled in part by compaction-driven pressurization and weakening. The model also produces a complex sequence of slow slip events (SSEs) beneath the seismogenic zone. The SSEs are initiated by compaction-driven pressurization and weakening and stalled by dilatant suctions. Modeled SSE sequences include long-term events lasting from a few months to years and very rapid short-term events lasting for only a few days; slip is ~1-10 cm. Despite ~1-10 MPa pore pressure changes, porosity and permeability changes are small and hence fluid flux is relatively constant except in the immediate vicinity of slip fronts. This contrasts with alternative fault valving models that feature much larger changes in permeability from the evolution of pore connectivity. Our model demonstrates the important role that compaction and dilatancy have on fluid pressure and fault slip, with possible relevance to slow slip events in subduction zones and elsewhere.