Exhumed high-pressure/low-temperature (HP/LT) metamorphic rocks provide insights into deep (~20-70 km) subduction interface dynamics. On Syros Island (Cyclades, Greece), the Cycladic Blueschist Unit (CBU) preserves blueschist-to-eclogite facies oceanic- and continental-affinity rocks that record the structural and thermal evolution associated with Eocene subduction. Despite decades of research, the pressure-temperature-deformation history (P-T-D), and timing of subduction and exhumation, are matters of ongoing discussion. Here we show that the CBU on Syros comprises three coherent tectonic slices, and each one underwent subduction, underplating, and syn-subduction return flow along similar P-T trajectories, but at progressively younger times. Subduction and return flow are distinguished by stretching lineations and ductile fold axis orientations: top-to-the-S (prograde-to-peak subduction), top-to-the-NE (blueschist facies exhumation), and then E-W coaxial stretching (greenschist facies exhumation). Amphibole chemical zonations record cooling during decompression, indicating return flow along the top of a cold subducting slab. New multi-mineral Rb-Sr isochrons and compiled metamorphic geochronology suggest that three nappes record distinct stages of peak subduction (53-52 Ma, ~50 Ma (?), and 47-45 Ma) that young with structural depth. Retrograde blueschist and greenschist facies fabrics span ~50-40 Ma and~43-20 Ma, respectively, and also young with structural depth. The datasets support a revised tectonic framework for the CBU, involving subduction of structurally distinct nappes and simultaneous return flow of previously accreted tectonic slices in the subduction channel shear zone. Distributed, ductile, dominantly coaxial return flow in an Eocene-Oligocene subduction channel proceeded at rates of ~1.5-5 mm/yr, and accommodated ~80% of the total exhumation of this HP/LT complex.