Daniel Jensen

and 3 more

One of the outstanding questions in lightning research is how dart leaders (also called recoil leaders or K-leaders) initiate and develop during a lightning flash. Dart leaders travel quickly (106-107 m/s) along previously ionized channels and occur intermittently in the later stage of a flash. We have recently reported some insights into dart leader initiation and development based on our BIMAP-3D observations. In this presentation we will expand on that work by combining observations and modeling to try to understand the observed dart leader behaviors. BIMAP-3D consists of two broadband interferometric mapping and polarization (BIMAP) systems that are separated by 11.5km at Los Alamos National Laboratory. Each station maps the lightning VHF sources in a 2D space, and the combination of the 2-station measurements provides a detailed 3D source map. A fast antenna is also included at each station for electric field change measurements. Our previously reported observations suggest dart leaders commonly exhibit an initial acceleration, followed by a more gradual deceleration to a stop. We also modeled the dart leader electric field change with a simple configuration of two point-charges, finding that the modeled tip charge increased in magnitude during the initial acceleration in some simple cases. We now employ a more sophisticated model to better understand the distribution of charge along the dart leader channel, and the background electric field in which the dart leader develops.Presented at the AGU 2023 Fall Meeting

Daniel Peter Jensen

and 3 more

In this paper, a numerical dart leader model has been implemented to understand the leader’s development and the corresponding electric field changes observed by the 3D Broadband Mapping And Polarization (BIMAP-3D) system. The model assumes the extending leader channel is equipotential and has a linear charge distribution induced by an ambient electric field. The charge distribution induced by the ambient field can be used to model the electric field change at the ground. We then find the ambient electric field which best fits the field change measurements at the two BIMAP stations. The estimated ambient electric field decreases in the direction of dart leader propagation. Our observations and modeling results are consistent with our earlier hypothesis that dart leader speed is proportional to the electric field at the leader tip. The model also supports our earlier analysis that leader speed variations near branch junctions were due to previous charge deposits near the junctions. The modeled tip electric field is generally lower than the breakdown field unless the pre-dart-leader channel has a significant temperature of ~3000 K. This is consistent with the fact that dart leaders typically do not form new branches into the virgin air. Furthermore, the tip field is generally close to the negative streamer stability field at ambient temperatures, explaining the nature of the narrow and well-defined channel structure. In addition to the charge distribution and the ambient and tip electric field, the development of the channel potential and current distribution are also presented.