Yaqi Jin

and 5 more

Abrupt changes in the solar wind dynamic pressure can greatly affect the Earth’s magnetosphere‐ionosphere system. We present an ionospheric flow vortex in the morning side during the sudden decrease in the solar wind dynamic pressure. The flow vortex was clearly observed by both the Hankasalmi radar and the azimuthal scan mode of the European Incoherent Scatter (EISCAT) Svalbard Radar (ESR). The flow vortex was first seen in the eastern field of view (FOV) of the Hankasalmi radar, and then propagated poleward and westward into the FOV of the ESR. During the passage of the flow vortex, a gradual decrease of electron density was observed by the field-aligned ESR 42 m antenna. When the equatorward directed ionospheric flow reached the ESR site, weak and visible increases in the electron density and electron temperature were observed. This impact was likely caused by soft electron precipitation associated with the clockwise flow vortex and upward field-aligned current. The azimuthal scan mode of the ESR 32 m radar at low elevation angle (30°) allowed us to measure key ionospheric parameters over a larger area (6° in latitude and 120° in azimuthal angle). The latitudinal scan of the electron temperature was used to derive the equatorward auroral boundary, which shows that the flow vortex was located in the subauroral region. We further demonstrated that it is possible to study the weak increase of electron density by using GPS total electron content (TEC) data. A minor TEC increase was observed near the center of the flow vortex.
Using a large dataset of ground-based GNSS scintillation observations coupled with in-situ particle detector data, we perform a statistical analysis of both the input energy flux from precipitating particles, and the observed prevalence of density irregularities in the northern hemisphere cusp. By examining geomagnetic activity trends in the two databases, we conclude that the occurrence of irregularities in the cusp grows increasingly likely during storm-time, whereas the precipitating particle energy flux does not. We thus find a weak or nonexistent statistical link between geomagnetic activity and precipitating particle energy flux in the cusp. This is a result of a documented tendency for the cusp energy flux to maximize during northward IMF, when density irregularities tend not to be widespread. Their number clearly maximizes during southward IMF. At any rate, even though ionization and subsequent density gradients directly caused by soft electron precipitation in the cusp are not to be ignored for the trigger of irregularities, our results point to the need to scrutinize additional physical processes for the creation of irregularities causing scintillations in and around the cusp. While numerous phenomena known to cause density irregularities have been identified and described, there is a need for a systematic evaluation of the conditions under which the various destabilizing mechanisms become important and how they sculpt the observed ionospheric ‘irregularity landscape’. As such, we call for a quantitative assessment of the role of particle precipitation in the cusp, given that other factors contribute to the production of irregularities in a major way.
This study uses over two years of 16 Hz density measurements, 50 Hz magnetic field data and ROTI data from the Swarm mission to perform long term statistics of plasma structuring in the polar ionosphere. The timeframe covers more than two years near the 24th solar cycle peak. We additionally use three years of data obtained from a timeframe close to solar minimum for discussion. We present power spectral densities (PSD) of electron density irregularities and magnetic field for one-minute intervals. These PSD have been characterized by the probability of a slope steepening, and by integrating the power deposited within frequency intervals corresponding to kilometer scales. For the electron density, we observe seasonal dependencies for both the integrated power and slope characteristics. While the dual slope probability, especially within the polar cap, varies with solar EUV-radiation, the integrated power is strongest around the equinoxes. Additionally, while we found similar results for the slope probability for both hemispheres, the integrated power exhibits strong hemispheric asymmetries with stronger enhancements within local summer in the southern hemisphere. The ROTI data shows a similar seasonal variability as the density PSD integrated power, in both seasonal dependency and interhemispheric variability. However, for the ROTI data the strongest fluctuations were found within the nightside auroral oval and the cusp. For the PSD of the magnetic field data, we obtain the strongest enhancements within the cusp for all seasons and all hemispheres. The fluctuations may indicate an increase in Alfvénic energy associated with a downward Poynting flux.

Shun-Rong Zhang

and 8 more

The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least four days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ~300-350 m/s (depending on the propagation direction) and 500-1000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 hours since the eruption. TIDs following the shock fronts developed for ~8 hours with 10-30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels of atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances.

Ercha Aa

and 7 more

This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground-based Global Navigation Satellite System (GNSS) total electron content (TEC), Swarm in-situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (1) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ~45~min after the eruption, comprising of several cascading TEC decreases and quasi-periodic oscillations. Such a deep local plasma hole was also observed by space-borne in-situ measurements, with an estimated horizontal radius of 10-15 deg and persisted for more than 10 hours in ICON-IVM ion density profiles until local sunrise. (2) Pronounced post-volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia-Oceania area after the arrival of volcano-induced waves; these caused a Ne decrease of 2-3 orders of magnitude at Swarm/ICON altitude between 450-575~km, covered wide longitudinal ranges of more than 140 deg and lasted around 12 hours. (3) Various acoustic-gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock-acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb-wave mode of ~315 m/s; the large-scale EPBs could be seeded by acoustic-gravity resonance and coupling to less-damped Lamb waves, under a favorable condition of volcano-induced enhancement of dusktime plasma upward ExB drift and postsunset rise of the equatorial ionospheric F-layer.