Ranjini Swaminathan

and 2 more

Vegetation Gross Primary Productivity (GPP) is the single largest carbon flux of the terrestrial biosphere which, in turn, is responsible for sequestering $25-30\%$ of anthropogenic carbon dioxide emissions. The ability to model GPP is therefore critical for calculating carbon budgets as well as understanding climate feedbacks. Earth System Models (ESMs) have the capability to simulate GPP but vary greatly in their individual estimates, resulting in large uncertainties. We describe a Machine Learning (ML) approach to investigate two key factors responsible for differences in simulated GPP quantities from ESMs: the relative importance of different atmospheric drivers and differences in the representation of land surface processes. We describe the different steps in the development of our interpretable Machine Learning (ML) framework including the choice of algorithms, parameter tuning, training and evaluation. Our results show that ESMs largely agree on the physical climate drivers responsible for GPP as seen in the literature, for instance drought variables in the Mediterranean region or radiation and temperature in the Arctic region. However differences do exist since models don’t necessarily agree on which individual variable is most relevant for GPP. We also explore a distance measure to attribute GPP differences to climate influences versus process differences and provide examples for where our methods work (South Asia, Mediterranean)and where they are inconclusive (Eastern North America).

Timothy Andrews

and 19 more

We investigate the dependence of radiative feedback on the pattern of sea-surface temperature (SST) change in fourteen Atmospheric General Circulation Models (AGCMs) forced with observed variations in SST and sea-ice over the historical record from 1871 to near-present. We find that over 1871-1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long-term climate sensitivity feedbacks (diagnosed from corresponding atmosphere-ocean GCM abrupt-4xCO2 simulations). Post 1980 however, the Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) that drove climate feedback to be uncorrelated with – and indicating much lower climate sensitivity than – that expected for long-term CO2 increase. We show that these conclusions are not strongly dependent on the AMIP II SST dataset used to force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in eight AGCMs forced with alternative HadISST1 SST boundary conditions. We quantify a ‘pattern effect’ (defined as the difference between historical and long-term CO2 feedback) equal to 0.44 ± 0.47 [5-95%] W m-2 K-1 for the time-period 1871-2010, which increases by 0.05 ± 0.04 W m-2 K-1 if calculated over 1871-2014. Assessed changes in the Earth’s historical energy budget are in agreement with the AGCM feedback estimates. Furthermore satellite observations of changes in top-of-atmosphere radiative fluxes since 1985 suggest that the pattern effect was particularly strong over recent decades, though this may be waning post 2014 due to a warming of the eastern Pacific.