Laure Resplandy

and 34 more

The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). Major advances have improved our understanding of the coastal air-sea exchanges of these three gasses since the first phase of the Regional Carbon Cycle Assessment and Processes (RECCAP in 2013), but a comprehensive view that integrates the three gasses at the global scale is still lacking. In this second phase (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ~60% larger in models (-0.72 vs. -0.44 PgC/yr, 1998-2018, coastal ocean area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e /yr in observational product and +0.54 PgCO2-e /yr in model median) and of CH4 (+0.21 PgCO2-e /yr in observational product), which offsets a substantial proportion of the net radiative effect of coastal \co uptake (35-58% in CO2-equivalents). Data products and models need improvement to better resolve the spatio-temporal variability and long term trends in CO2, N2O and CH4 in the global coastal ocean.

Fabrice Lacroix

and 7 more

Biogeochemical cycling in permafrost-affected ecosystems remains associated with large uncertainties, which could impact the Earth’s greenhouse gas budget and future climate mitigation policies. In particular, increased nutrient availability following permafrost thaw could perturb biogeochemical cycling in permafrost systems, an effect largely unexplored in global assessments. In this study, we enhance the terrestrial ecosystem model QUINCY, which fully couples carbon (C), nitrogen (N) and phosphorus (P) cycles in vegetation and soil, with processes relevant in high latitudes (e.g., soil freezing and snow dynamics). We use this enhanced model to investigate impacts of increased carbon and nutrient availability from permafrost thawing in comparison to other climate-induced effects and CO2 fertilization over 1960 to 2019 over a multitude of tundra sites. Our simulation results suggest that vegetation growth in high latitudes is acutely N-limited at our case study sites. Despite this, enhanced availability of nutrients in the deep active layer following permafrost thaw, simulated to be around 0.1 m on average since the 1960s, accounts for only 11 % of the total GPP increase averaged over all sites. Our analysis suggests that the decoupling of the timing of peak vegetative growth (week 27-29 of the year, corresponding to mid-to-late July) and maximum thaw depth (week 34-37, corresponding to mid-to-late August), lead to an incomplete plant use of newly available nutrients at the permafrost front. Due to resulting increased availability of N at the permafrost table, as well as alternating water saturation levels, increases in both nitrification and denitrification enhance N2O emissions in the simulations. Our model thus suggests a weak (5 mg N m-2 yr-1) but increasing source of N2O, which reaches trends of up to +1 mg N m-2 yr-1 per decade, locally, which is potentially of large importance for the global N2O budget.