Jean-Christophe Golaz

and 70 more

This work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima (DECK) simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate is generally realistic, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Programme (WCRP) assessment. However, E3SMv2 significantly underestimates the global mean surface temperature in the second half of the historical record. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.

Yi Qin

and 2 more

Atmosphere-only experiments are widely used to investigate climate feedbacks simulated in more computationally expensive fully-coupled global climate model simulations. We confirm that this remains a valid approach by comparing the radiative feedbacks and forcing between coupled and atmosphere-only simulations for the latest models taking part in the 6th phase of the Coupled Model Intercomparison Project (CMIP6). For cloud feedbacks, we find a better than previously known correspondence between these experiments, which applies even to the response of individual cloud properties (amount, altitude and optical depth), is present at nearly every geographic location, and holds even when considering atmosphere-only simulations of only 1 year duration. In the tropics, the correspondence between the two experiments is better revealed when considering feedbacks stratified by vertical motion rather than by geography, owing to the non-uniform warming pattern in the coupled experiment. For the lapse rate and surface albedo feedbacks, the correspondence between the two experiments is weaker due to the lack of sea-ice changes in the atmosphere-only experiment. For the across-model relationship between 4xCO2 radiative forcing and feedback, we find a different behavior across experiments in CMIP6 than in CMIP5, casting doubt on the physical significance of previous results that highlighted an anti-correlation between the two quantities. Overall, these results confirm the utility of atmosphere-only experiments particularly to study cloud feedbacks, which are the dominant source of inter-model spread in climate sensitivity.