Peidong Shi

and 11 more

The application of machine learning techniques in seismology has greatly advanced seismological analysis, especially for earthquake detection and seismic phase picking. However, machine learning approaches still face challenges in generalizing to datasets that differ from their original setting. Previous studies focused on retraining or transfer-training models for these scenarios, though restricted by the availability of high-quality labeled datasets. This paper demonstrates a new approach for augmenting already trained models without the need for additional training data. We propose four strategies - rescaling, model aggregation, shifting, and filtering - to enhance the performance of pre-trained models on out-of-distribution datasets. We further devise various methodologies to ensemble the individual predictions from these strategies to obtain a final unified prediction result featuring prediction robustness and detection sensitivity. We develop an open-source Python module quakephase that implements these methods and can flexibly process input continuous seismic data of any sampling rate. With quakephase and pre-trained ML models from SeisBench, we perform systematic benchmark tests on data recorded by different types of instruments, ranging from acoustic emission sensors to distributed acoustic sensing, and collected at different scales, spanning from laboratory acoustic emission events to major tectonic earthquakes. Our tests highlight that rescaling is essential for dealing with small-magnitude seismic events recorded at high sampling rates as well as larger magnitude events having long coda and remote events with long wave trains. Our results demonstrate that the proposed methods are effective in augmenting pre-trained models for out-of-distribution datasets, especially in scenarios with limited labeled data for transfer learning.

Nikolaj L. Dahmen

and 7 more

NASA’s InSight seismometer has been recording Martian seismicity since early 2019, and to date, over 1300 marsquakes have been catalogued by the Marsquake Service (MQS). Due to typically low signal-to-noise ratios (SNR) of marsquakes, their detection and analysis remain challenging: while event amplitudes are relatively low, the background noise has large diurnal and seasonal variations and contains various signals originating from the interactions of the local atmosphere with the lander and seismometer system. Since noise can resemble marsquakes in a number of ways, the use of conventional detection methods for catalogue curation is limited. Instead, MQS finds events through manual data inspection. Here, we present MarsQuakeNet (MQNet), a deep convolutional neural network for the detection of marsquakes and the removal of noise contamination. Based on three-component seismic data, MQNet predicts segmentation masks that identify and separate event and noise energy in time-frequency domain. As the number of catalogued MQS events is small, we combine synthetic event waveforms with recorded noise to generate a training data set. We apply MQNet to the entire continuous 20 samples-per-second waveform data set available to date, for automatic event detection and for retrieving denoised amplitudes. The algorithm reproduces all high quality-, as well as majority of low quality events in the manual, carefully curated MQS catalogue. Furthermore, MQNet detects 60% additional events that were previously unknown with mostly low SNR, that are verified in manual review. Our analysis on the event rate confirms seasonal trends and shows a substantial increase in the second Martian year.