Jeff Winterbourne

and 1 more

Measurements and models of global geophysical parameters such as potential fields, seismic velocity models and dynamic / residual topography are well represented as 2D coloured / contoured maps. However, as teaching aids and for outreach, they offer little impact. Modern 3D-printing techniques help to visualize these and other concepts that are difficult to grasp, such as the intangible structures in the deep Earth. We developed a simple method for portraying scalar fields by 3D printing modified globes of surface topography, representing the parameter of interest as additional, exaggerated topography. This is particularly effective for long-wavelength (>500 km) fields. The workflow uses only open source and free-to-use software, and the resulting models print easily and effectively on a cheap (<300 GBP, 400USD) desktop 3D-printer. We have printed 3D representations of different scalar fields, including models of the surface topography of rocky planets, which can be used in outreach events. These objects are powerful to explain the importance of plate tectonics in shaping a planet. The workflow was extended to 3D scalar fields by analogy to Russian nesting dolls, where the audience can remove shallower layers to see how structures change with depth. We applied this to global seismic tomography models resulting in prototypes of “seismic matryoshkas” (see Figure). The tactile nature of these objects ensures that anyone, including the visually impaired, can explore the structures present deep within our planet

Paula Koelemeijer

and 3 more

3D-printing techniques allow us to visualise geophysical concepts that are difficult to grasp, making them perfect for incorporation into teaching and outreach packages. Abstract models, often represented as 2D coloured maps, become more tactile when represented as 3D physical objects. In addition, new questions tend to be asked and different features noticed when handling such objects, while they also make outreach and education more inclusive to the visually impaired. Some of our most effective models are simply exaggerated planetary topography in 3D, including Earth, Mars and the Moon. The resulting globes provide a powerful way to explain the importance of plate tectonics in shaping a planet and linking surface features to deeper dynamic processes. In addition, we have developed a simple method for portraying abstract global models by 3D printing modified globes of surface topography, representing the parameter of interest as additional, exaggerated long-wavelength topography. This workflow has been applied to models of dynamic topography, the geoid and seismic tomography. In analogy to Russian nesting dolls, the resulting “seismic matryoshkas” have multiple layers that can be removed by the audience to explore the structures present deep within our planet and learn about the ongoing dynamic processes. While these 3D objects are easily printed on a cheap (<300 GBP, 400USD) desktop 3D-printer, the printing times still prohibit large-scale production. To ensure that there is sufficient material in a teaching setting, we have therefore also developed complementary paper equivalents. By projecting the coloured maps onto a dodecahedron, we developed cut-out-and-fold models to be handed out in a classroom setting to complement the 3D printed globes used for demonstration purposes. Together with animations, suggested questions and instructor “cheat-sheets”, these materials form a complete teaching and outreach package that is both interactive and inclusive.