Gustaf Hugelius

and 42 more

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern permafrost region is projected to weaken or shift under climate change. But large uncertainties remain, even on present-day GHG budgets. We compare bottom-up (data-driven upscaling, process-based models) and top-down budgets (atmospheric inversion models) of the main GHGs (CO2, CH4, and N2O) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches estimate higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric inversions. Both bottom-up and top-down approaches respectively show a net sink of CO2 in natural ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but sources of CH4 (38 (23, 53) and 15 (11, 18) Tg CH4-C yr-1) and N2O (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N2O-N yr-1) in natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including anthropogenic emissions, the combined GHG budget is a source of 147 (-492, 759) Tg CO2-Ceq yr-1 (GWP100). A net CO2 sink in boreal forests and wetlands is offset by CO2 emissions from inland waters and CH4 emissions from wetlands and inland waters, with a smaller additional warming from N2O emissions. Priorities for future research include representation of inland waters in process-based models and compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more in-situ flux observations and improved resolution in upscaling.

Camilla Mathison

and 11 more

Global studies of climate change impacts that use future climate model projections also require projections of land surface changes. Simulated land surface performance in Earth System models is often affected by climate biases of the atmospheric models, leading to errors in land surface projections. Here we run the JULES-ES land surface model with ISIMIP2b bias-corrected climate model data from 4 global climate models (GCMs). The bias correction reduces the impact of the climate biases present in individual models. We evaluate JULES-ES performance against present-day observations to demonstrate its usefulness for providing required information for impacts such as fire and river flow. We simulate a historical and two future scenarios; a mitigation scenario RCP2.6 and RCP6.0, which has very little mitigation. We include a standard JULES-ES configuration without fire as a contribution to ISIMIP2b and JULES-ES with fire as a potential future development. Simulations for gross primary productivity, evapotranspiration (ET) and albedo compare well against observations. Including fire improves the simulations, especially for ET and albedo and vegetation distribution, with some degradation in shrub cover and river flow. This configuration represents some of the most current earth system science for land surface modelling. The suite associated with this configuration provides a basis for past and future phases of ISIMIP, providing a simulation setup, postprocessing and initial evaluation using ILAMB. This suite ensures that it is as straightforward, reproducible and transparent as possible to follow the protocols and participate fully in ISIMIP using JULES.