Meridional eddy transport across the Antarctic Circumpolar Current is an essential component of the global meridional overturning circulation and the transport of climate relevant tracers. Challenges in comparing model and observational estimates of the transport arise from varying methodologies describing ‘eddy’ processes. We reconcile the approach used in shipboard surveys of eddies, complemented by satellite eddy tracking, with Reynolds decomposition applied to model outputs. This allows us to estimate the fraction of total meridional tracer transport attributed to coherent eddies in a global 0.1$^\circ$ ocean model. The model realistically simulates observed eddy kinetic energy and three-dimensional characteristics, particularly in representing an observed cyclonic eddy near 150 \degrees E, a hotspot for poleward heat flux. Annual meridional transports due to coherent eddies crossing the Subantarctic Front are estimated by vertically and radially integrating the tracer contents of all eddies. Notably, only cyclonic eddies moving equatorward across the Subantarctic Front contribute to the coherent eddy transport, with no anticyclonic eddies found to cross the front poleward in this region. Applying Reynolds decomposition, our study reveals predominantly poleward meridional transports due to all transient processes in a standing meander, particularly between the northern and southern branches of the Subantarctic Front. Coherent, long-lived eddies tracked from satellite data contribute less than 20\% to transient poleward heat transport, and equatorward nitrate transport in the model. Furthermore, we demonstrate that the integrated surface elevation of mesoscale eddies serves as a reliable proxy for inferring subsurface eddy content.

Alice Della Penna

and 7 more

Southern Ocean eddies shape the foraging ecology of marine apex predators such as marine mammals and seabirds. A growing number of animal tracking studies show that predators alter their swimming, diving, and foraging behavior in mesoscale eddies. However, little is known about how Southern Ocean eddies influence the distribution of mesopelagic micronekton (fish, squid, and crustaceans), which are major prey items of megafauna. Studies in other parts of the world have found that eddies can impact the abundance and community composition of micronekton. Here, we analyze acoustic observations from a 14-day survey of a mesoscale eddy, its surrounding waters, and the Sub-Antarctic frontal waters where the eddy originated. We report and interpret spatial patterns of acoustic backscattering at 18 kHz, a proxy indicating combined changes in species, size, and abundance of micronekton. We find that the vertical distribution of Deep Scattering Layers matched the underwater light conditions characteristic of the eddy core, periphery, and surrounding waters, at scales smaller than 10 km. Furthermore, the average water-column integrated acoustic backscattering values in the eddy core were only half of the values measured in the Sub-Antarctic Zone waters surrounding the eddy. By contrast, the acoustic properties of the eddy core were similar to those measured in the Polar Front Zone, where the eddy originated 27 days before our sampling. These results show that, as for physical and chemical tracers, the eddy maintained its biological characteristics from its source waters creating a unique habitat compared to its surrounding waters.