Roger R Fu

and 6 more

Within the young solar system, a strong magnetic field permeated the protoplanetary disc. The solar nebular magnetic field is likely the source of magnetization for some meteorites like the CM and CV chondrites, which underwent aqueous alternation on their parent bodies before the solar nebular field dissipated. Since aqueous alteration produced magnetic minerals (e.g. magnetite and pyrrhotite), the meteorites could have acquired a chemical remanent magnetization from the nebular field while part of their respective parent bodies. However, questions about the formation history of the parent bodies that produced magnetized CM and CV chondrites await answers—including whether the parent bodies exhibit a detectable magnetic field today. Here, we use thermal evolution models to show that a parent body of the CM chondrites could record ancient magnetic fields and, perhaps, exhibit strong present-day crustal remanent fields. An undisturbed planetesimal would experience one of three thermal evolution cases with respect to the lifetime of the nebular field. First, if a planetesimal formed too late for 26Al-driven water ice melting to occur before the solar nebula dissipates, then aqueous alteration would not occur in the presence of the nebular field and result in no magnetization (Fig. panel a). Second, if a planetesimal forms early enough to undergo alteration before the nebula dissipates but not enough to heat beyond the blocking temperature(s) of the magnetic mineral(s), then nearly the entire planetesimal could be magnetized (Fig. panel b). Lastly, if a planetesimal forms early enough to undergo alteration and subsequently heats beyond the blocking temperature, then any magnetization would be erased except for a thin shell near the surface (Fig. panel c). Our thermal model results suggest that planetesimals that formed between ~2.7 and 3.7 Myr after CAIs could acquire large-scale magnetization. Spacecraft missions could detect this magnetization if it is at the strength recorded in CM chondrites and if it is coherent at scales of tens of kilometers. In-situ magnetometer measurements of chondritic asteroids could help link magnetized asteroids to magnetized meteorites. Specifically, a spacecraft detection of remanent magnetization at 2 Pallas would bolster the claim that 2 Pallas is a parent body of CM chondrites.

Lennart de Groot

and 9 more

Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g. (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size and shape; some of them record the Earth’s magnetic field well, others are unreliable. The presence of a small amount of adverse behaved magnetic grains in a sample may already obscure important information on the past state of the geomagnetic field. Recently it was shown that it is possible to determine magnetizations of individual grains in a sample by combining X-ray computed tomography and magnetic surface scanning measurements. Here we establish this new Micromagnetic Tomography (MMT) technique and make it suitable for use with different magnetic scanning techniques, and for both synthetic and natural samples. We acquired reliable magnetic directions by selecting subsets of grains in a synthetic sample, and we obtained rock-magnetic information of individual grains in a volcanic sample. This illustrates that MMT opens up entirely new venues of paleomagnetic and rock-magnetic research. MMT’s unique ability to determine the magnetization of individual grains in a nondestructive way allows for a systematic analysis of how geological materials record and retain information on the past state of the Earth’s magnetic field. Moreover, by interpreting only the contributions of known magnetically well-behaved grains in a sample MMT has the potential to unlock paleomagnetic information from even the most complex, crucial, or valuable recorders that current methods are unable to recover.