Rik Wanninkhof

and 5 more

Monthly global sea-air CO2 flux estimates from 1998-2020 are produced by extrapolation of surface water fugacity of CO2 (fCO2w) observations using an Extra-trees (ET) machine learning technique. This new product (AOML_ET) is one of the eleven observation-based submissions to the second REgional Carbon Cycle Assessment and Processes (RECCAP2) effort. The target variable fCO2w is derived using the predictor variables including date, location, sea surface temperature, mixed layer depth, and chlorophyll-a. A monthly resolved sea-air CO2 flux product on a 1˚ by 1˚ grid is created from this fCO2w product using a bulk flux formulation. Average global sea-air CO2 fluxes from 1998-2020 are -1.7 Pg C yr-1 with a trend of 0.9 Pg C decade-1. The sensitivity to omitting mixed layer depth or chlorophyll-a as predictors is small but changing the target variable from fCO2w to air-water fCO2 difference has a large effect, yielding an average flux of -3.6 Pg C yr-1 and a trend of 0.5 Pg C decade-1. Substituting a spatially resolved marine air CO2 mole fraction product for the commonly used zonally invariant marine boundary layer CO2 product yield greater influx and less outgassing in the Eastern coastal regions of North America and Northern Asia but with no effect on the global fluxes. A comparison of AOML_ET for 2010 with an updated climatology following the methods of Takahashi et al. (2009), that extrapolates the surface CO2 values without predictors, shows overall agreement in global patterns and magnitude.

Holly Olivarez

and 8 more

We use a statistical emulation technique to construct synthetic ensembles of global and regional sea-air carbon dioxide (CO2) flux from four observation-based products over 1985-2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2 flux and produce a wide range of possible trends over 1990-1999 and 2000-2009. We assume a specific externally forced signal and calculate the likelihood of the observed trend given the distribution of synthetic trends during these two periods. Over the decade 1990-1999, three of the four observation-based products exhibit small negative trends in globally integrated sea-air CO2 flux (i.e., enhanced ocean CO2 absorption with time) that are highly probable (44-72% chance of occurrence) in their respective synthetic trend distributions. Over the decade 2000-2009, however, three of the four products show large negative trends in globally integrated sea-air CO2 flux that are somewhat improbable (17-19% chance of occurrence). Our synthetic ensembles suggest that the largest observation-based positive trends in global and Southern Ocean CO2 flux over 1990-1999 and the largest negative trends over 2000-2009 are somewhat improbable (<30% chance of occurrence). Our approach provides a new understanding of the role of internal and external processes in driving sea-air CO2 flux variability.