Eli J. Mlawer

and 5 more

The infrared window region (780-1250 cm-1, 12.8 to 8.0 µm) is of great importance to Earth’s climate due to its high transparency and thermal energy. We present here a new investigation of the transparency of this spectral region based on observations by interferometers of downwelling surface radiance at two DOE Atmospheric Radiation Measurement program sites. We focus on the dominant source of absorption in this region, the water vapor continuum, and derive updated values of spectral absorption coefficients for both the self and foreign continua. Our results show that the self continuum is too strong in the previous version of Mlawer-Tobin_Clough-Kneizys-Davies (MT_CKD) water vapor continuum model, a result that is consistent with other recent analyses, while the foreign continuum is too weak in MT_CKD. In general, the weaker self continuum derived in this study results in an overall increase in atmospheric transparency in the window, although in atmospheres with low amounts of water vapor the transparency may slightly decrease due to the increase in foreign continuum absorption. These continuum changes lead to a significant decrease in downwelling longwave flux at the surface for moist atmospheres and a modest increase in outgoing longwave radiation. The increased fraction of surface-leaving radiation that escapes to space leads to a notable increase (~5-10%) in climate feedback, implying that climate simulations that use the new infrared window continuum will show somewhat less warming than before. This study also points out the possibly important role that aerosol absorption may play in the longwave radiative budget.

Kelley C. Wells

and 10 more

Isoprene is the dominant non-methane organic compound emitted to the atmosphere, where it drives ozone and aerosol production, modulates atmospheric oxidation, and interacts with the global nitrogen cycle. Isoprene emissions are highly variable and uncertain, as is the non-linear chemistry coupling isoprene and its primary sink, the hydroxyl radical (OH). Space-based isoprene measurements can help close the gap on these uncertainties, and when combined with concurrent formaldehyde data provide a new constraint on atmospheric oxidation regimes. Here we present a next-generation machine-learning isoprene retrieval for the Cross-track Infrared Sounder (CrIS) that provides improved sensitivity, lower noise, and thus higher space-time resolution than earlier approaches. The Retrieval of Organics with CrIS Radiances (ROCR) isoprene measurements compare well with previous space-based retrievals as well as with the first-ever ground-based isoprene column measurements, with 20-50% discrepancies that reflect differing sources of systematic uncertainty. An ensemble of sensitivity tests points to the spectral background and isoprene profile specification as the most relevant uncertainty sources in the ROCR framework. We apply the ROCR isoprene algorithm to the full CrIS record from 2012-2020, showing that it can resolve fine-scale spatial gradients at daily resolution over the world’s isoprene hotspots. Results over North America and Amazonia highlight emergent connections between isoprene abundance and daily-to-interannual variations in temperature, nitrogen oxides, and drought stress.