Paul McLachlan

and 6 more

Understanding sensitive wetlands often requires non-invasive methods to characterize their complex geological structure and hydrogeological parameters. Here, geoelectrical characterization is explored by employing frequency-domain electromagnetic induction (EMI) at a site previously characterized by extensive intrusive measurements and 3D electrical resistivity tomography (ERT). This work investigates the performance of several approaches to obtain structural information from EMI data and sharp and smooth inversions. Additionally, the hydrological information content of EMI data is investigated using correlation with piezometric measurements, established petrophysical relationships, and synthetic modeling. EMI measurements were dominated by peat thickness and were relatively insensitive to both topography and depth to bedrock. An iso-conductivity method for peat depth estimation had a normalized mean absolute difference (NMAD) of 23.5%, and although this performed better than the sharp inversion algorithm (NMAD = 73.5%), a multi-linear regression approach achieved a more accurate prediction with only 100 measurements (NMAD = 17.8%). In terms of hydrological information content, it was not possible to unravel correlation causation at the site, however, synthetic modeling demonstrates that the EMI measurements are predominantly controlled by the electrical conductivity of the upper peat pore-water and not the thickness of the unsaturated zone or the lower peat pore-water conductivity. Additionally, a priori information significantly improves the potential for time-lapse applications in similar environments. This study provides an objective overview and insights for future EMI applications in similar environments. It also covers areas seldom investigated in EMI studies, e.g. error quantification and the depth of investigation of ERT models used for EMI calibration.

Craig Ulrich

and 6 more

As a result of climate change, California is experiencing the impact of more extreme weather patterns including longer drought periods and atmospheric rivers resulting in extreme snow pack and heavy flood flows. CA faces a significant challenge to mitigate these impacts while simultaneously providing resilient sources of water under uncertain future conditions. One approach that addresses both flood mitigation and water storage is the use of Managed Aquifer Recharge (MAR). Ventura County Waterworks District #1 (VCWWD) is designing a MAR recharge facility to divert flood flows in the adjacent Arroyo Las Posas to a series of engineered basins, where water will infiltrate and replenish the local aquifer (estimated recharge: 3000 acre-feet annually). However, large uncertainties in percolation rates and an inability to predict or improve percolation (measured: 5 and 16 cm/day) places large uncertainties on the facility’s ultimate performance (and impact) on VCWWD’s overall strategy for sustainable groundwater management. The goals of this project are to use a suite of geophysical techniques, point sensors and novel modeling approaches to measure the basin(s) spatial recharge rates, where and how the water is infiltrating (fast paths) and how will basin modification improve recharge rates. Selected basins will first be characterized using electromagnetic methods and electrical resistivity tomography (ERT) coupled with soil cores to estimate the distribution of subsurface permeability in order to design the infiltration monitoring layout. During managed flooding events Spontaneous Potential will be used to monitor subsurface leakage from the basins back into the river. Within a basin, novel vertical Distributed Temperature Profiling sensors will measure diurnal temperature fluxes to calculate spatially distributed 1-D vertical recharge rates and 3D time-lapse ERT to monitor and measure the spatially dynamic recharge. ERT results will be coupled with multi-point geostatistical simulations to estimate soil permeability field scenarios and with novel joint inversion codes to estimate volumetric recharge and rates, offering a powerful suite of tools for water managers to quantify, and potentially improve basin recharge rates and develop operational and maintenance plans to maximize recharge.