Kelly O'Neill

and 4 more

To address discrepancies between bottom-up and top-down inventories of methane emissions, the detection and quantification of methane point source emissions is of critical concern. Multiple airborne imaging spectrometer campaigns have identified the heavy-tailed distribution of point source methane emissions. The quantification of point source plumes is a two-part problem requiring the detection and delineation of plumes, followed by an accurate accounting of their total methane enhancement. Plume detection and delineation has often relied on manual or statistical methods, but automated methods taking into account plume morphology are essential as the volume of imaging spectrometer data rapidly increases. Fully convolutional neural networks (FCNNs) represent a robust solution to this problem allowing for the detection and delineation of methane point source emissions with minimal analyst input. This work demonstrates the applicability of FCNNs for accurate quantification of methane point source emissions by training a model on data from a 2019 Permian Basin survey by the Next Generation Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG). FCNNs were trained using plumes that were manually interpreted from matched filter retrievals of methane enhancements. Our methodology was able to accurately detect and delineate methane plumes, and did so with fewer false positives than statistical methods. Given the anticipated satellite imaging spectrometer missions capable of global mapping of point sources, automated deep learning methods will be necessary to deal with methane plume detection in very large volumes of data.

Melissa Yang

and 52 more

The 2020 COVID-19 pandemic provided a unique opportunity to sample atmospheric gases during a period of very low industrial/human activity. Over 1000 Whole Air Samples were collected in over 30 cities and towns across the United States from April through July 2020 as part of the NASA Student Airborne Research Program (SARP). Sample locations leveraged the geographic distribution across the United States of the undergraduate and graduate students, faculty, and NASA personnel associated with the internship program (44 people total). Each person collected approximately 24 air samples in their city/town with the goal of characterizing local emissions with time during the pandemic. Samples were collected in 2-Liter stainless steel evacuated canisters at approximately 2 meters above ground level. The canisters were shipped to the Rowland/Blake Laboratory at the University of California Irvine and analyzed for methane, carbon dioxide, carbon monoxide, non-methane hydrocarbons, and halocarbons using the gas chromatographic system described in Colman et al. (2001) and Barletta et al. (2002). Initial samples collected in April coincided with the peak of stay-at-home/social distancing orders across most of the United States while samples collected later in the spring and early summer reflect the easing of these measures in most locations. Overall trends in emissions with time across the United States during the pandemic (in several large metro areas as well as rural locations) will be discussed.

Patrick Sullivan

and 4 more