Ambient fine particulate matter (PM2.5) concentrations in India frequently exceed 100 μg/m3 during fall and winter pollution episodes. We use the GEOS-Chem chemical transport model with the TwO-Moment Aerosol Sectional microphysics scheme with 15 size bins (TOMAS15) to assess PM2.5 composition and impacts on radiation and cloud condensation nuclei (CCN) during pollution episodes as compared to the seasonal (October-December) average. We conduct high resolution (0.25 degree x0.3125 degree) nested-domain simulations over India for short-duration, high-PM2.5 episodes in fall 2015 and 2017. The simulations capture the magnitude and spatial patterns of pollution episodes measured by surface monitors (r2PM2.5=0.69) although aerosol optical depth is underestimated. During the episodes, near-surface organic matter (OM), black carbon (BC), and secondary inorganic aerosol concentrations increase from seasonal averages by up to 36, 7, and 7 µg/m3, respectively. Episodic aerosol increases enhance cooling by lowering the top-of-atmosphere clear-sky direct radiative effect (DRETOA) during the 2015 episode (-6 W/m2), with a smaller impact during the 2017 episode (-1 W/m2). Differences in DRETOA reflect larger increases in scattering aerosols in the column during the 2015 episode (+17 mg/m2) than in 2017 (+13 mg/m2), while absorbing aerosol column enhancements are smaller (+3 mg/m2) in both years. Changes in shortwave radiation at the surface (SWsfc) are spatially similar to DRETOA and mostly negative during both episodes. CCN enhancements during these episodes occur across the western Indo-Gangetic Plain, coincident with higher PM2.5 concentrations. Changes in DRETOA, SWsfc, and CCN during high-PM2.5 episodes may have implications for crops, the hydrologic cycle, and surface temperature.

Arlene M. Fiore

and 9 more

Risk assessments of air pollution impacts on human health and ecosystems would ideally consider a broad set of climate and emission scenarios and the role of natural internal climate variability within a single scenario. We analyze initial condition chemistry-climate ensembles to gauge the significance of greenhouse-gas-induced air pollution changes relative to internal climate variability, and response differences in two models. To quantify the effects of climate change on the frequency and duration of summertime regional-scale pollution episodes over the Eastern United States (EUS), we apply an Empirical Orthogonal Function (EOF) analysis to a 3-member GFDL-CM3 ensemble with prognostic ozone and aerosols and a 12-member NCAR-CESM1 ensemble with prognostic aerosols under a 21st century RCP8.5 scenario with air pollutant emissions frozen in 2005. Correlations between GFDL-CM3 principal components for ozone, PM2.5 and temperature represent spatiotemporal relationships discerned previously from observational analysis. Over the Northeast region, both models simulate summertime surface temperature increases of over 5 °C from 2006-2025 to 2081-2100 and PM2.5 of up to 1-4 μg m-3. The ensemble average decadal incidence of upper quartile Northeast PM2.5 events lasting at least five days doubles in GFDL-CM3 and increases >50% in NCAR-CESM1. In other EUS regions, inter-model differences in PM2.5 responses to climate change cannot be explained by internal climate variability. Our EOF-based approach anticipates future opportunities to data-mine initial condition chemistry-climate model ensembles for probabilistic assessments of changing frequency and duration of regional-scale pollution and heat events while obviating the need to bias-correct concentration-based thresholds separately in individual models.