Bradley J Garczynski

and 39 more

During the NASA Perseverance rover’s exploration of the Jezero crater floor, purple-hued coatings were commonly observed on rocks. These features likely record past water-rock-atmosphere interactions on the crater floor, and understanding their origin is important for constraining timing of water activity and habitability at Jezero. Here we characterize the morphologic, chemical, and spectral properties of the crater floor rock coatings using color images, visible/near-infrared reflectance spectra, and chemical data from the Mastcam-Z and SuperCam instruments. We show that coatings are common and compositionally similar across the crater floor, and consistent with a mixture of dust, fine regolith, sulfates, and ferric oxides indurated as a result of one or more episodes of widespread surface alteration. All coatings exhibit a similar smooth homogenous surface with variable thickness, color, and spatial extent on rocks, likely reflecting variable oxidation and erosional expressions related to formation and/or exposure age. Coatings unconformably overlie eroded natural rock surfaces, suggesting relatively late deposition that may represent one of the last aqueous episodes on the Jezero crater floor. While more common at Jezero, these coatings may be consistent with rock coatings previously observed in-situ at other landing sites and may be related to duricrust formation, suggesting a global alteration process on Mars that is not unique to Jezero. The Perseverance rover likely sampled these rock coatings on the crater floor and results from this study could provide important context for future investigations by the Mars Sample Return mission aimed at constraining the geologic and aqueous history of Jezero crater.
Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on “Mt. Sharp” in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences cross-cut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemistry and timing of these fluid interactions is unclear. Determining how diagenetic processes may have modified chemical and mineralogical signatures of ancient martian environments is critical for understanding the past habitability of Mars and achieving the goals of the MSL mission. Here we use visible/near-infrared spectra from Mastcam and ChemCam to determine the mineralogical origins of color variations in the ridge. Color variations are consistent with changes in spectral properties related to the crystallinity, grain size, and texture of hematite. Coarse-grained gray hematite spectrally dominates in the gray patches and is present in the purple areas, while nanophase and fine-grained red crystalline hematite are present and spectrally dominate in the red and purple areas. We hypothesize that these differences were caused by grain size coarsening of hematite by diagenetic fluids, as observed in terrestrial analogs. In this model, early primary reddening by oxidizing fluids near the surface was followed during or after burial by bleaching to form the gray patches, possibly with limited secondary reddening after exhumation. Diagenetic alteration may have diminished the preservation of biosignatures and changed the composition of the sediments, making it more difficult to interpret how conditions evolved in the paleolake over time.

Melissa Rice

and 16 more

The Mars Science Laboratory (MSL) Curiosity rover has explored over 400 meters of vertical stratigraphy within Gale crater to date. These fluvio-deltaic, lacustrine, and aeolian strata have been well-documented by Curiosity’s in-situ and remote science instruments, including the Mast Camera (Mastcam) pair of multispectral imagers. Mastcam visible to near-infrared (VNIR) spectra can broadly distinguish between iron phases and oxidation states, and in combination with chemical data from other instruments, Mastcam spectra can help constrain mineralogy, depositional origin, and diagenesis. However, no traverse-scale analysis of Mastcam multispectral data has yet been performed. We compiled a database of Mastcam spectra from >600 multispectral observations and 1 quantified spectral variations across Curiosity’s traverse through Vera Rubin ridge (sols 0-2302). From principal component analysis and an examination of spectral parameters, we identified 9 rock spectral classes and 5 soil spectral classes. Rock classes are dominated by spectral differences attributed to hematite and other oxides (due to variations in grain size, composition, and abundance) and are mostly confined to specific stratigraphic members. Soil classes fall along a mixing line between soil spectra dominated by fine-grained Fe-oxides and those dominated by olivine-bearing sands. By comparing trends in soil vs. rock spectra, we find that locally derived sediments are not significantly contributing to the spectra of soils. Rather, varying contributions of dark, mafic sands from the active Bagnold Dune field is the primary spectral characteristic of soils. These spectral classes and their trends with stratigraphy provide a basis for comparison in Curiosity’s ongoing exploration of Gale crater.