Christa L. Torrens

and 2 more

The relationship between dissolved solute concentration (C) and discharge (q) in streams, i.e., the C-q relationship, is a useful diagnostic tool for understanding biogeochemical processes in watersheds. In the ephemeral glacial meltwater streams of the McMurdo Dry Valleys [MDVs], Antarctica, studies show significant chemostatic relationships for weathering solutes and NO3-. Dissolved organic carbon (DOC) concentrations here are low compared to temperate streams, in the range of 0.1 to 2 mg C L-1, and their chemical signal clearly indicates derivation from microbial biomass. Many MDV streams support abundant microbial mats, which are also a source of organic matter to underlying hyporheic sediments. We investigated whether the DOC generation rate from these autochthonous organic matter pools was sufficient to maintain chemostasis for DOC despite these streams’ large diel and interannual fluctuations in discharge. To evaluate the DOC-q relationship, we fit the long-term DOC-q data to two models: a power law and an advection-reaction model. By using model outputs and other common metrics to characterize the DOC-q relationship, we found that this relationship is chemostatic in several MDV streams. We propose a conceptual model in which hyporheic carbon storage, hyporheic exchange rates, and net DOC generation rates are key interacting components that enable chemostatic DOC-q behavior in MDV streams. This model clarifies the role of autochthonous carbon stores in maintaining DOC-q chemostasis and may be useful for examining these relationships in temperate systems, where autochthonous organic carbon is readily bioavailable but where its signal is masked by a larger allochthonous signal.

Sidney Bush

and 4 more

Climate projections suggest that snowfall-dominated areas will decline substantially in the coming decades. Such climate impacts are already being observed in Colorado where the dominant source of annual peak discharge is shifting from snowmelt to rainfall, altering the paths by which water flows through a landscape and is ultimately delivered to streams. Observed climate driven shifts in stream flow dynamics and permanence highlight the increasing importance of understanding the hydrologic connectivity of uplands to streams in lower elevation, montane ecoregions. We collected geochemical and hydrometric data over three years to quantify hydrologic connectivity of uplands to a montane headwater stream at the Manitou Experimental Forest in central Colorado. We use a combined approach of concentration-discharge relationships and end-member mixing analysis, paired with high resolution measurements of soil moisture, precipitation, and groundwater levels to characterize source areas to the stream in 3-dimensions: longitudinal, lateral, and vertical. Samples were collected and measurements were recorded along the stream profile (longitudinal), from groundwater wells and soil lysimeters installed with increasing distance from the stream (lateral), and from shallow versus deep groundwater wells and soil moisture measured at different depths (vertical). Results indicate distinct differences in stream chemistry along the longitudinal stream profile, with highest concentrations at the most upstream sites and lowest concentrations at the most downstream sites. Stream solute concentrations increased with decreasing stream discharge values from spring to late summer. However, the stream remained chemostatic during all recorded rain storms, suggesting a difference in flow pathways during individual summer storm pulses. End member mixing analysis suggests spatiotemporal differences in shallow and deep vertical source areas, and between riparian and upland sources to the stream. These results provide a promising step towards quantifying the expansion and contraction of runoff source areas to a montane headwater stream.