Nadja Landshuter

and 2 more

Stratiform and convective precipitation are known to be associated with distinct isotopic fingerprints in the tropics. Such rain type specific isotope signals are of key importance for climate proxies based on stable isotopes like for example ice cores and tree rings and can be used for climate reconstructions of convective activity. However, recently, the relation between rain type and isotope signal has been intensively discussed. While some studies point out the importance of deep convection for strongly depleted isotope signals in precipitation, other studies emphasize the role of stratiform precipitation for low concentrations of the heavy water isotopes. Uncertainties arise from observational studies as they mainly consider oceanic regions and mostly long aggregation timescales, while modelling approaches with global climate models cannot explicitly resolve convective processes and rely on parametrization. As high-resolution climate models are particularly important for studies over complex topography, we applied the isotope-enabled version of the high-resolution climate model from the Consortium for Small-Scale Modelling (COSMOiso) over the Andes of tropical south Ecuador, South America, to investigate the influence of stratiform and convective rain on the stable oxygen isotope signal of precipitation (δ18OP). Our results highlight the importance of deep convection for depleting the isotopic signal of precipitation and increasing the secondary isotope variable deuterium excess. Moreover, we found that an opposing effect of shallow and deep convection on the δ18OP signal. Based on these results, we introduce a shallow and deep convective fraction to analyze the effect of rain types on δ18OP.

Theresa Lang

and 5 more

We conduct a series of eight 45-day experiments with a global storm-resolving model (GSRM) to test the sensitivity of relative humidity R in the tropics to changes in model resolution and parameterizations. These changes include changes in horizontal and vertical grid spacing as well as in the parameterizations of microphysics and turbulence, and are chosen to capture currently existing differences among GSRMs. To link the R distribution in the tropical free troposphere with processes in the deep convective regions, we adopt a trajectory-based assessment of the last-saturation paradigm. The perturbations we apply to the model result in tropical mean R changes ranging from 0.5% to 8% (absolute) in the mid troposphere. The generated R spread is similar to that in a multi-model ensemble of GSRMs and smaller than the spread across conventional general circulation models, supporting that an explicit representation of deep convection reduces the uncertainty in tropical R. The largest R changes result from changes in parameterizations, suggesting that model physics represent a major source of humidity spread across GSRMs. The R in the moist tropical regions is disproportionately sensitive to vertical mixing processes within the tropics, which impact R through their effect on the last-saturation temperature rather than their effect on the evolution of the humidity since last-saturation. In our analysis the R of the dry tropical regions strongly depends on the exchange with the extra-tropics. The interaction between tropics and extratropics could change with warming and presage changes in the radiatively sensitive dry regions.
We present a Lagrangian framework for identifying mechanisms that control the isotopic composition of mid-tropospheric water vapor in the Sahel region during the West African Monsoon 2016. In this region mixing between contrasting air masses, strong convective activity, as well as surface and rain evaporation lead to high variability in the distribution of stable water isotopologues. Using backward trajectories based on high-resolution isotope-enabled model data, we obtain information not only about the source regions of Sahelian air masses, but also about the evolution of H2O and its isotopologue HDO (expressed as δD) along the pathways of individual air parcels. We sort the full trajectory ensemble into groups with similar transport pathways and hydro-meteorological properties, such as precipitation and relative humidity, and investigate the evolution of the corresponding paired {H2O, δD} distributions. The use of idealized process curves in the {H2O, δD} phase space allows us to attribute isotopic changes to contributions from (1) air mass mixing, (2) Rayleigh condensation during convection, and (3) microphysical processes depleting the vapor beyond the Rayleigh prediction, i.e., partial rain evaporation in unsaturated and isotopic equilibration δin saturated conditions. Different combinations of these processes along the trajectory ensembles are found to determine the final isotopic composition in the Sahelian troposphere during the monsoon. The presented Lagrangian framework is a powerful tool for interpreting tropospheric water vapor distributions. In the future, it will be applied to satellite observations of H2O, δD} over Africa and other regions in order to better quantify characteristics of the hydrological cycle.

Bjorn Stevens

and 291 more

The science guiding the \EURECA campaign and its measurements are presented. \EURECA comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic — eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, \EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that \EURECA explored — from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation — are presented along with an overview \EURECA’s outreach activities, environmental impact, and guidelines for scientific practice.