Christian Stenner

and 3 more

Mount St. Helens, Washington State, USA, is characterized by a 2 x 3.5 km horseshoe-shaped and north-facing crater and hosts one of the last expanding glaciers in the Cascade Volcanic Arc, Crater Glacier. First observed in 2012, a new and extensive system of glaciovolcanic caves has developed around the 2004-2008 Lava Dome inside the Crater Glacier. Field studies have documented the cave characteristics via photography and tacheometric survey methods repeated from 2014-2019. Climatologic measurements reveal that sub-glacial fumarole activity leads to large-scale cave complexes, sometimes several hundred meters long. These allowed comparisons of passage extent and volume to be made and gave us a unique opportunity to observe their genesis over time. Ten distinct caves have been discovered in a circumferential pattern surrounding the 2004-2008 Lava Dome. The caves comprise a combined length of 2,232.3 m, the three most significant ones reaching more than 400 m each. Changes in the output of individual fumaroles which have melted the passages have also contributed to the appearance and disappearance of subglacial rooms and marginal dendritic passages which typically orient to entrances along the rock/ice interface. Over time the caves have demonstrated significant morphological changes. Multiple caves demonstrated increases in length and volume over the study period, along with changes to internal morphology. Caves located on the east and west arm of the glacier are additionally influenced by glacier movement and a fast flow rate which contribute much to morphology changes. Resurveys of cave passages over multiple years have revealed the dynamic nature of the systems, which are not necessarily in balance with the geothermal heat release. We expect that the overall growth of the cave systems will continue as long as an equilibrium of snow accumulation and ablation is reached or changes in volcanic activity occur. The newly formed glaciovolcanic cave systems on Mount St. Helens offer a rare view into the internal workings of a glacier and can lead to a better understanding of how glaciers and active volcanoes interact.

Lee John Florea

and 3 more

The fumarole ice caves of Mount Rainier in the Cascade Volcanic Arc in Washington, USA, provide unique insight into the dynamic equilibrium between thermal flux on volcanic edifices and snow accumulation on summit glaciers. More than 3.5 km of surveyed cave passage nearly circumnavigate the East Crater, reaching within 19 m of the 4392-m summit and extending to 144-m-deep along the glacier-crater boundary. The large circum-crater passage connects entrances on the crater rim to steep transverse passages, and cave morphology is maintained by fumarole gas convection and advection. A melt- and condensate-formed lake, Lake Adélie, occupies a portion of the circum-crater passage. Hourly data were collected between August 2016 and August 2017 and included the measured temperatures at three fumarole, the cave air temperature and pressure, the lake water temperature and depth, and the outside temperature and snow depth at Paradise Visitors Center. Time-series analyses of these data reveal complex associations between synoptic to seasonal weather, fumarole activity, and lake level. On seasonal and longer scales, fumarole temperatures follow independent pathways connected to spatial and temporal changes in volcanic heat flux and the circulation of glacial melt. For synoptic-scale meteorology, major snowfall seals the cave entrances, increasing cave air temperature and pressure from fumarole output and causing rising lake levels from increased melt until entrances reopen. Repeating freeze-thaw cycles observed in the cave monitoring data are a primary cause of crater mass wasting. Despite these variations, the scale and morphology of the caves is preserved over decadal or longer scales.