Rémy Lapere

and 13 more

Natural aerosols and their interactions with clouds remain an important uncertainty within climate models, especially at the poles. Here, we study the behavior of sea salt aerosols (SSaer) in the Arctic and Antarctic within 12 climate models from CMIP6. We investigate the driving factors that control SSaer abundances and show large differences based on the choice of the source function, and the representation of aerosol processes in the atmosphere. Close to the poles, the CMIP6 models do not match observed seasonal cycles of surface concentrations, likely due to the absence of wintertime SSaer sources such as blowing snow. Further away from the poles, simulated concentrations have the correct seasonality, but have a positive mean bias of up to one order of magnitude. SSaer optical depth is derived from the MODIS data and compared to modeled values, revealing good agreement, except for winter months. Better agreement for AOD than surface concentration may indicate a need for improving the vertical distribution, the size distribution and/or hygroscopicity of modeled polar SSaer. Source functions used in CMIP6 emit very different numbers of small SSaer, potentially exacerbating cloud-aerosol interaction uncertainties in these remote regions. For future climate scenarios SSP126 and SSP585, we show that SSaer concentrations increase at both poles at the end of the 21st century, with more than two times mid-20th century values in the Arctic. The pre-industrial climate CMIP6 experiments suggest there is a large uncertainty in the polar radiative budget due to SSaer.

Shaddy Ahmed

and 15 more

Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one-dimensional atmospheric chemistry and transport model (PACT-1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model \ch{Cl2} and \ch{Br2} primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a two-day case study from the 2009 Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) campaign at Utqia\.gvik, Alaska. The model reproduces both the diurnal cycle and high quantity of \ch{Cl2} observed, along with the measured concentrations of \ch{Br2}, \ch{BrO}, and \ch{HOBr}. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is confined to the lowest 15 m of the atmosphere, while bromine impacts chemistry up to the boundary layer height. Upon including halogen emissions and recycling, the concentration of \ch{HO_x} (\ch{HO_x} = \ch{OH}+\ch{HO2}) at the surface increases by as much as a factor of 30 at mid-day. The change in \ch{HO_x} due to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound (VOC) lifetimes within a shallow layer near the surface.