Susan M. O'Neill

and 39 more

Biomass burning has shaped many of the ecosystems of the planet and for millennia humans have used it as a tool to manage the environment. When widespread fires occur, the health and daily lives of millions of people can be affected by the smoke, often at unhealthy to hazardous levels leading to a range of short-term and long-term health consequences such as respiratory issues, cardiovascular issues, and mortality. It is critical to adequately represent and include smoke and its consequences in atmospheric modeling systems to meet needs such as addressing the global climate carbon budget and informing and protecting the public during smoke episodes. Many scientific and technical challenges are associated with modeling the complex phenomenon of smoke. Variability in fire emissions estimates has an order of magnitude level of uncertainty, depending upon vegetation type, natural fuel heterogeneity, and fuel combustion processes. Quantifying fire emissions also vary from ground/vegetation-based methods to those based on remotely sensed fire radiative power data. These emission estimates are input into dispersion and air quality modeling systems, where their vertical allocation associated with plume rise, and temporal release parameterizations influence transport patterns, and, in turn affect chemical transformation and interaction with other sources. These processes lend another order of magnitude of variability to the downwind estimates of trace gases and aerosol concentrations. This chapter profiles many of the global and regional smoke prediction systems currently operational or quasi-operational in real time or near-real time. It is not an exhaustive list of systems, but rather is a profile of many of the systems in use to give examples of the creativity and complexity needed to simulate the phenomenon of smoke. This chapter, and the systems described, reflect the needs of different agencies and regions, where the various systems are tailored to the best available science to address challenges of a region. Smoke forecasting requirements range from warning and informing the public about potential smoke impacts to planning burn activities for hazard reduction or resource benefit. Different agencies also have different mandates, and the lines blur between the missions of quasi-operational organizations (e.g. research institutions) and agencies with operational mandates. The global smoke prediction systems are advanced, and many are self-organizing into a powerful ensemble, as discussed in section 2. Regional and national systems are being developed independently and are discussed in sections 3-5 for Europe (11 systems), North America (7 systems), and Australia (3 systems). Finally, the World Meteorological Organization (WMO) effort (section 6) is bringing together global and regional systems and building the Vegetation Fire and Smoke Pollution Advisory and Assessment Systems (VFSP-WAS) to support countries with smoke issues and who lack resources.

Joseph Wilkins

and 7 more

Naturally occurring ozone rich Stratosphere-to-Troposphere Transport (STT) intrusions and biomass burning (BB) plumes reaching the surface can contribute to exceedances of the U.S. National Ambient Air Quality Standards for ground-level ozone (70 ppbv implemented in 2015). Additionally, fires can inject significant pollution into the free troposphere where it can be transported long distances. The combined air quality impacts from these sources on ozone has only been analyzed in a few case studies for the Midwest U.S. Here we study ozone impacts in a Midwestern city, for the first time in St. Louis, Missouri, using a series of ozonesonde profiles taken during the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) field campaign in August-September 2013. All ozonesondes showed enhancements above the background profile levels (~55 ppbv) throughout each tropospheric column. Two models were used to estimate ozone origins in columns. A chemical transport model identified STT enhancements equivalent to 10 to 15 ppbv over the background with a 10 to 15% contribution overall to the column. Two FLEXPART-WRF simulations, one with smoke in the boundary layer and another with smoke above, identified BB enhancements equivalent to 10 to 80 ppbv. Overall, the total BB contribution is 15 to 30% of the total column. Five ozonesondes showed signatures of mixed BB plumes and STT intrusions. During this study period, BB in the western U.S. contributed 70% to ozone enhancements in the total column compared to 3% from the central U.S and 27% from other areas.