Susanne Byrd

and 2 more

Mars and Venus have atmospheres but lack large-scale intrinsic magnetic fields. Consequently, the solar wind interaction at each planet results in the formation of an induced magnetosphere. Our work aims to compare the low-altitude (< 250 km) component of the induced magnetic field at Venus and Mars using observations from Pioneer Venus Orbiter (PVO) and Mars Atmosphere and Volatile EvolutioN (MAVEN). The observations from Mars are restricted to regions of weak crustal magnetism. At Venus, it has long been known the vertical structure of the induced magnetic field profiles have recurring features that enable them to be classified as either magnetized or unmagnetized. We find the induced field profiles at Mars are more varied, lack recurring features, and are unable to be classified in the same way. The solar zenith angle dependence of the low-altitude field strength at both planets is controlled by the shape of the magnetic pileup boundary. Also, because the ionospheric thermal pressure at Venus is often comparable to the solar wind dynamic pressure, the induced fields are weaker than required to balance the solar wind by themselves. By contrast, induced fields at Mars are stronger than required to achieve pressure balance. Lastly, we find the induced fields in the magnetized ionosphere of Venus have a weaker dependence on solar wind dynamic pressure than the induced fields at Mars. Our results point to planetary properties, such as planet-Sun distance, having a major effect on the properties of induced fields at nonmagentized planets.

Andrea C. G. Hughes

and 16 more

Proton aurora are the most commonly observed yet least studied type of aurora at Mars. In order to better understand the physics and driving processes of Martian proton aurora, we undertake a multi-model comparison campaign. We compare results from four different proton/hydrogen precipitation models with unique abilities to represent Martian proton aurora: Jolitz model (3-D Monte Carlo), Kallio model (3-D Monte Carlo), Bisikalo/Shematovich et al. model (1-D kinetic Monte Carlo), and Gronoff et al. model (1-D kinetic). This campaign is divided into two steps: an inter-model comparison and a data-model comparison. The inter-model comparison entails modeling five different representative cases using similar constraints in order to better understand the capabilities and limitations of each of the models. Through this step we find that the two primary variables affecting proton aurora are the incident solar wind particle flux and velocity. In the data-model comparison, we assess the robustness of each model based on its ability to reproduce a MAVEN/IUVS proton aurora observation. All models are able to effectively simulate the data. Variations in modeled intensity and peak altitude can be attributed to differences in model capabilities/solving techniques and input assumptions (e.g., cross sections, 3-D versus 1-D solvers, and implementation of the relevant physics and processes). The good match between the observations and multiple models gives a measure of confidence that the appropriate physical processes and their associated parameters have been correctly identified, and provides insight into the key physics that should be incorporated in future models.

Zachary Girazian

and 10 more

Discrete aurora at Mars, characterized by their small spatial scale and tendency to form near strong crustal magnetic fields, are emissions produced by particle precipitation into the Martian upper atmosphere. Since 2014, Mars Atmosphere and Volatile EvolutioN’s (MAVEN’s) Imaging Ultraviolet Spectrograph (IUVS) has obtained a large collection of nightside UV discrete aurora observations. Initial analysis of these observations has shown that, near the strong crustal field region (SCFR) in the southern hemisphere, the aurora detection frequency is highly sensitive to the interplanetary magnetic field (IMF) clock angle. However, the role of other solar wind properties in controlling the aurora detection frequency has not yet been determined. In this work, we use IUVS discrete aurora observations, and MAVEN solar wind observations, to determine how the discrete aurora detection frequency varies with solar wind dynamic pressure, IMF strength, and IMF cone angle. We find that, outside of the SCFR, the detection frequency is relatively insensitive to the IMF orientation, but significantly increases with solar wind dynamic pressure and moderately increases with IMF strength. Interestingly, the auroral emission brightness outside the SCFR is insensitive to the dynamic pressure. Inside the SCFR, the detection frequency is moderately dependent on the dynamic pressure and is much more sensitive to the IMF clock and cone angles. In the SCFR, aurora are unlikely to occur when the IMF points near the radial or anti-radial directions. Together, these results provide the first comprehensive characterization of how upstream solar wind conditions affect the formation of discrete aurora at Mars.