Tam Van Nguyen

and 6 more

Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km²), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternates the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices.

Fanny J. Sarrazin

and 6 more

Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past N inputs to the landscape, that have accumulated through time in legacy stores (e.g. soil, groundwater). Catchment-scale N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and dynamics of legacy components. This study aims to gain a better understanding of the long-term fate of the N inputs and its uncertainties, using a legacy-driven N model (ELEMeNT) in Germany’s largest national river basin (Weser; 38,450 km2) over the period 1960-2015. We estimate the nine model parameters based on a progressive constraining strategy, to assess the value of different observational datasets. We demonstrate that beyond in-stream N loading, soil N content and in-stream N concentration allow to reduce the equifinality in model parameterizations. We find that more than 50% of the N surplus denitrifies (1480-2210 kg ha-1) and the stream export amounts to around 18% (410-640 kg ha-1), leaving behind as much as around 230-780 kg ha-1 of N in the (soil) source zone and 10-105 kg ha-1 in the subsurface. A sensitivity analysis reveals the importance of different factors affecting the residual uncertainties in simulated N legacies, namely hydrologic travel time, denitrification rates, a coefficient characterising the protection of organic N in source zone and N surplus input. Our study calls for proper consideration of uncertainties in N legacy characterization, and discusses possible avenues to further reduce the equifinality in water quality modelling.