Souhail Dahani

and 11 more

Fundamental processes in plasmas act to convert energies into different forms, e.g., electromagnetic, kinetic and thermal. Direct derivation from the Valsov-Maxwell equation yields sets of equations that describe the temporal evolution of the magnetic, kinetic and internal energies in either the monofluid or multifluid frameworks. In this work we focus on the main terms that affect the changes in the kinetic energy. These are pressure gradient-related terms and electromagnetic terms. The former account for plasma acceleration or deceleration from a pressure gradient, while the latter from an electric field. The overall balance between these terms is fundamental to ensure the conservation of energy and momentum. We use in-situ observations from the Magnetospheric MultiScale (MMS) mission to study the relationship between these terms. We perform a statistical analysis of those parameters in the context of magnetic reconnection by focusing on small-scale Electron Diffusion Regions and large-scale Flux Transfer Events. The analysis reveals a correlation between the two terms in the monofluid force balance, and in the ion force and energy balance. However, the expected relationship cannot be verified from electron measurements. Generally, the pressure gradient related terms are smaller than their electromagnetic counterparts. We perform an error analysis to quantify the expected underestimation of gradient values as a function of the spacecraft separation compared to the gradient scale. Our findings highlight that MMS is capable of capturing energy and force balance for the ion fluid, but that care should be taken for energy conversion terms based on electron pressure gradients.

Rungployphan Kieokaew

and 27 more

Magnetopause Kelvin-Helmholtz (KH) waves are believed to mediate solar wind plasma transport via small-scale mechanisms. Vortex-induced reconnection (VIR) was predicted in simulations and recently observed using NASA’s Magnetospheric Multiscale (MMS) mission data. Flux Transfer Events (FTEs) produced by VIR at multiple locations along the periphery of KH waves were also predicted in simulations but detailed observations were still lacking. Here we report MMS observations of an FTE-type structure in a KH wave trailing edge during KH activity on 5 May 2017 on the dawnside flank magnetopause. The structure is characterised by (1) bipolar magnetic BY variation with enhanced core field BZ and (2) enhanced total pressure with dominant magnetic pressure. The cross-section size of the FTE is found to be consistent with vortex-induced flux ropes predicted in the simulations. Unexpectedly, we observe an ion jet (VY), electron parallel heating, ion and electron density enhancements, and other signatures that can be interpreted as a reconnection exhaust at the FTE central current sheet. Moreover, pitch angle distributions of suprathermal electrons on either side of the current sheet show different properties, indicating different magnetic connectivities. This FTE-type structure may thus alternatively be interpreted as two interlaced flux tubes with reconnection at the interface as reported by Kacem et al. (2018) and Øieroset et al. (2019). The structure may be the result of interaction between two flux tubes, likely produced by multiple VIR at the KH wave trailing edge, and constitutes a new class of phenomenon induced by KH waves.

Sergio Toledo Redondo

and 15 more

The Earth’s magnetosphere is filled by particles from two sources: the solar wind and the ionosphere. Ionospheric ions are initially cold and contain He+ and O+, in addition to to H+. Depending on their initial magnetic latitude and local time, and the state of the magnetosphere, they may contribute to the plasmasphere, the plasma sheet, the ring current, the warm plasma cloak etc. Depending on which path they follow in the magnetosphere, some of these ionospheric ions remain cold when they reach the two key reconnection regions: the Earth’s magnetopause and the plasma sheet in the tail. In this presentation, we will first review previous statistical works that quantify the number of cold/ionospheric ions near these two regions. Several works have attempted to quantify these populations, but they are inherently difficult to characterize due to their low energy, often below the spacecraft potential. We will also discuss the impacts they have on the magnetic reconnection process. Ionospheric ions mass-load the regions where reconnection takes place and change the characteristic Alfven speed, resulting in a smaller reconnection electric field. They also take a portion of the energy that is imparted to particles, affecting the energy budget of magnetic reconnection. Finally, they introduce new length and time scales, associated to their gyroradius and gyroperiod. We will discuss what are the implications of these impacts for the evolution of the magnetosphere – solar wind interactions.

Mats André

and 3 more

Wakes behind spacecraft caused by supersonic drifting positive ions are common in plasmas and disturb in situ measurements. We concentrate on observations of the electric field with double-probe instruments. When the equivalent spacecraft charging is small compared to the ion drift energy the wake effects are caused by the spacecraft body and can be compensated for. We discuss examples from the Cluster spacecraft in the solar wind, including statistics of the direction, width and electrostatic potential of wakes, and compare with an analytical model. When the equivalent positive spacecraft charging is large compared to the ion drift energy, an enhanced wake forms. In this case observations of the geophysical electric field with the double-probe technique becomes extremely challenging. Rather, the wake can be used to estimate the flux of cold (eV) positive ions. We discuss such examples from the Cluster spacecraft in the low-density magnetospheric lobes. For an intermediate range of parameters, when the equivalent charging of the spacecraft is similar to the drift energy of the ions, also the charged wire booms of a double-probe instrument must be taken into account. We discuss an example of these effects from the MMS spacecraft near the magnetopause. We find that the observed wake characteristics provide information which can be used for scientific studies. An important example is the enhanced wakes used to estimate the outflow of ionospheric origin in the magnetospheric lobes to about 10^26 cold (eV) ions/s, constituting a large fraction of the mass outflow from planet Earth.

Sergio Toledo-Redondo

and 15 more

Ionospheric ions (mainly H+, He+ and O+) escape from the ionosphere and populate the Earth’s magnetosphere. Their thermal energies are usually low when they first escape the ionosphere, typically a few eV to tens of eV, but are energized in their journey through the magnetosphere. The ionospheric population is variable, and it makes significant contributions to the magnetospheric mass density in key regions where magnetic reconnection is at work. Solar wind - magnetosphere coupling occurs primarily via magnetic reconnection, a key plasma process that enables transfer of mass and energy into the near-Earth space environment. Reconnection leads to the triggering of magnetospheric storms, aurorae, energetic particle precipitation and a host of other magnetospheric phenomena. Several works in the last decades have attempted to statistically quantify the amount of ionospheric plasma supplied to the magnetosphere, including the two key regions where magnetic reconnection proceeds: the dayside magnetopause and the magnetotail. Recent in-situ observations by the Magnetospheric Multiscale spacecraft and associated modelling have advanced our current understanding of how ionospheric ions alter the magnetic reconnection process at meso- and small-scales, including its onset and efficiency. This article compiles the current understanding of the ionospheric plasma supply to the magnetosphere. It reviews both the quantification of these sources and their effects on the process of magnetic reconnection. It also provides a global description of how the ionospheric ion contribution modifies the way the solar wind couples to the Earth’s magnetosphere and how these ions modify the global dynamics of the near-Earth space environment.

Sergio Toledo-Redondo

and 14 more

In situ spacecraft missions are powerful assets to study processes that occur in space plasmas. One of their main limitations, however, is extrapolating such local measurements to the global scales of the system. To overcome this problem at least partially, multi-point measurements can be used. There are several multi-spacecraft missions currently operating in the Earth’s magnetosphere, and the simultaneous use of the data collected by them provides new insights into the large-scale properties and evolution of magnetospheric plasma processes. In this work, we focus on studying the Earth’s magnetopause using a conjunction between the MMS and Cluster fleets, when both missions skimmed the magnetopause for several hours at distant locations during radial IMF conditions. The observed magnetopause positions as a function of the evolving solar wind conditions and compared to model predictions of the magnetopause. We observe an inflation of the magnetosphere (˜0.7 RE), consistent with magnetosheath pressure decrease during radial IMF conditions, which is less pronounced on the flank (< 0.2 RE). There is observational evidence of magnetic reconnection in the subsolar region for the whole encounter, and in the dusk flank for the last portion of the encounter, suggesting that reconnection was extending more than 15 RE. However, reconnection jets were not always observed, suggesting that reconnection was patchy, intermittent or both. Shear flows reduce the reconnection rate up to ˜30% in the dusk flank according to predictions, and the plasma ß enhancement in the magnetosheath during radial IMF favors reconnection suppression by the diamagnetic drift.