Nina Kristine Eriksen

and 10 more

Dong Lin

and 14 more

Solar eruptions cause geomagnetic storms in the near-Earth environment, creating spectacular aurorae visible to the human eye and invisible dynamic changes permeating all of geospace. Just equatorward of the aurora, radars and satellites often observe intense westward plasma flows called subauroral polarization streams (SAPS) in the dusk-to-midnight ionosphere. SAPS occur across a narrow latitudinal range and lead to intense frictional heating of the ionospheric plasma and atmospheric neutral gas. SAPS also generate small-scale plasma waves and density irregularities that interfere with radio communications. As opposed to the commonly observed duskside SAPS, intense eastward subauroral plasma flows in the morning sector were recently discovered to have occurred during a super storm on 20 November 2003. However, the origin of these flows termed “dawnside SAPS” could not be explained by the same mechanism that causes SAPS on the duskside and has remained a mystery. Through real-event global geospace simulations, here we demonstrate that dawnside SAPS can only occur during major storm conditions. During these times the magnetospheric plasma convection is so strong as to effectively transport ions to the dawnside, whereas they are typically deflected to the dusk by the energy-dependent drifts. Ring current pressure then builds up on the dawnside and drives field-aligned currents that connect to the subauroral ionosphere, where eastward SAPS are generated. The origin of dawnside SAPS explicated in this study advances our understanding of how the geospace system responds to strongly disturbed solar wind driving conditions that can have severe detrimental impacts on human society and infrastructure.

Dong Lin

and 14 more

Strong subauroral plasma flows were observed in the dawnside ionosphere during the 20 November 2003 super geomagnetic storm. They are identified as dawnside subauroral polarization streams (SAPS) in which plasma drift direction is eastward and opposite to the westward SAPS typically found in the dusk sector. Both dawnside and duskside SAPS are driven by the enhanced meridional electric field in the low latitude portion of Region-2 field-aligned currents (FACs) in the subauroral region where ionospheric conductance is relatively low. However, dawnside eastward SAPS were only observed in the main and recovery phases while duskside westward SAPS were found much earlier before the sudden storm commencement. Simulations with the Multiscale Atmosphere-Geospace Environment (MAGE) model demonstrate that the eastward SAPS are associated with dawnside ring current build-up. Unlike the duskside where ring current build-up and SAPS formation can occur under moderate driving conditions, strong magnetospheric convection is required for plasmasheet ions to overcome their energy-dependent drifts to effectively build up the dawnside ring current and upward Region-2 FACs. We further used test particle simulations to show the characteristic drift pattern of energetic protons under strong convection conditions and how they are related to the dawnside SAPS occurrence. This study demonstrates the connection between the level of solar wind driving condition and a rare ionospheric structure, eastward SAPS on the dawnside, which only occur under strong convection typically associated with intense or super storms. Dawnside SAPS are suggested as a unique feature of major geomagnetic storms.

Robert Schaefer

and 6 more

The equatorial ionosopheric anomalies (EIA) at night are the slowly recombining remnants of the dayside ionosphere, and charged particle densities slowly decay during the course of the night. Thus the electron density in ionosphere in the early morning (0300-0400 Local time) is usually very low and the ionospheric UV 135.6 nm O+ recombination emission is rarely detectable from current UV remote sensing instruments. However, there are times when the EIA have unusually high density even during these morning times and are observable by the DMSP/SSUSI and TIMED/GUVI instruments. By using other UV ‘colors’ - 130.4 nm (from monatomic Oxygen) and N2 Lyman Birge Hopfield bands - we can establish that this emission is definitely from the ionosphere recombination emission. We will show examples of this phenomenon, and correlate these occurrences to geomagnetic storm events. We estimate the electron density in the early morning EIA and compare with other ionosphere observations and climatological models. In the figure below, we show the 135.6 nm radiance seen by DMSP F16 SSUSI as it crosses the equator around 210 degrees longitude (over the Pacific Ocean) at 03:45 local time. The equatorial anomaly peaks are clearly visible in the SSUSI data. These radiances are background subtracted, which is not perfect and introduces a small (-1 Rayleigh) bias to the resulting radiances. DMSP = Defense Meteorological Satellite Program, SSUSI = Special Sensor Ultraviolet Spectrographic Imager; TIMED = Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics, GUVI = Global UltraViolet Imager