Chunhui Zhan

and 7 more

The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate change, is primarily attributed to the CO₂ fertilization effect on global gross primary productivity (GPP). However, direct observational evidence of this effect remains scarce, hampered by challenges in disentangling the CO₂ fertilization effect from other long-term drivers, particularly climatic changes. Here, we introduce a novel statistical approach to separate the CO₂ fertilization effect on GPP and daily maximum net ecosystem production (NEPmax) using eddy covariance records across 38 extratropical forest sites. We find the median stimulation rate of GPP and NEPmax to be 16.4 ± 4% and 17.2 ± 4% per 100 ppm increase in atmospheric CO₂ across these sites, respectively. To validate the robustness of our findings, we test our statistical method using factorial simulations of an ensemble of process-based land surface models. We acknowledge that additional factors, including nitrogen deposition and land management, may impact plant productivity, potentially confounding the attribution to the CO₂ fertilization effect. Assuming these site-specific effects offset to some extent across sites as random factors, the estimated median value still reflects the strength of the CO₂ fertilization effect. However, disentanglement of these long-term effects, often inseparable by timescale, requires further causal research. Our study provides direct evidence that the photosynthetic stimulation is maintained under long-term CO₂ fertilization across multiple eddy covariance sites. Such observation-based quantification is key to constraining the long-standing uncertainties in the land carbon cycle under rising CO₂ concentrations.
Vegetation plays a fundamental role in modulating the exchange of water, energy, and carbon fluxes between the land and the atmosphere. These exchanges are modelled by Land Surface Models (LSMs), which are an essential part of numerical weather prediction and data assimilation. However, most current LSMs implemented specifically in weather forecasting systems use climatological vegetation indices, and land use/land cover datasets in these models are often outdated. In this study, we update land surface data in the ECMWF land surface modelling system ECLand using Earth observation-based time varying leaf area index and land use/land cover data, and evaluate the impact of vegetation dynamics on model performance. The performance of the simulated latent heat flux and soil moisture is then evaluated against global gridded observation-based datasets. Updating the vegetation information does not always yield better model performances because the model’s parameters are adapted to the previously employed land surface information. Therefore we recalibrate key soil and vegetation-related parameters at individual grid cells to adjust the model parameterizations to the new land surface information. This substantially improves model performance and demonstrates the benefits of updated vegetation information. Interestingly, we find that a regional parameter calibration outperforms a globally uniform adjustment of parameters, indicating that parameters should sufficiently reflect spatial variability in the land surface. Our results highlight that newly available Earth-observation products of vegetation dynamics and land cover changes can improve land surface model performances, which in turn can contribute to more accurate weather forecasts.

Siyuan Wang

and 5 more

Natural and anthropogenic disturbances are important drivers of tree mortality, shaping the structure, composition, and biomass distribution of forest ecosystems. Differences in disturbance regimes, characterized by the frequency, extent, and intensity of disturbance events, result in structurally different landscapes. Characterizing different disturbance regimes through landscape-scale forest structure provides a unique perspective for diagnosing the impacts and potential carbon-climate feedbacks from terrestrial ecosystems. In this study, we design a model-based experiment to investigate the links between disturbance regimes and spatial biomass patterns. We generate over 850 thousand biomass patterns, from 2,142 combinations of μ, α, and β under different primary productivity and background mortality scenarios. We characterize the emergent biomass patterns via synthesis statistics, including central tendency statistics; different moments of the distribution; information-based and texture features. We further follow a multi-output regression approach that takes the biomass synthesis statistics and gross primary production (GPP) as independent variables to retrieve the three disturbance regimes parameters. Results show confident inversion of all three “true” disturbance parameters, with Nash-Sutcliffe efficiency of  94.8% for μ, 94.9% for α, and 97.1% for β. Overall, these results demonstrate the association between biomass patterns and disturbance statistics that emerge from different underlying disturbance regimes. By doing so, it overcomes the known issue of equifinality between mortality rates and total biomass. Given the increasing availability of Earth observation of biomass, our findings open a new avenue to better understand and parameterize disturbance regimes and their links with vegetation dynamics under climate change. Ultimately, at a large scale, this approach would improve our current understanding of controls and feedback at the biosphere-atmosphere interface in the current Earth system models.

Çağlar Küçük

and 5 more

Hydrological interactions between vegetation, soil, and topography are complex, and heterogeneous in semi-arid landscapes. This along with data scarcity poses challenges for large-scale modelling of vegetation-water interactions. Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km spatial resolution for ecohydrological analysis. Their spatial patterns are based on Fractional Vegetation Cover (FVC) time series and emphasise limiting conditions of the seasonal wet to dry transition: the minimum and maximum FVC of temporal record, the FVC decay rate and the FVC integral over the decay period. We investigate the relevance of these metrics for large scale ecohydrological studies by assessing their co-variation with soil moisture, and with topographic, soil, and vegetation factors. Consistent with our initial hypothesis, FVC minimum and maximum increase with soil moisture, while the FVC integral and decay rate peak at intermediate soil moisture. We find evidence for the relevance of topographic moisture variations in arid regions, which, counter-intuitively, is detectable in the maximum but not in the minimum FVC. We find no clear evidence for wide-spread occurrence of the “inverse texture effect”’ on FVC. The FVC integral over the decay period correlates with independent data sets of plant water storage capacity or rooting depth while correlations increase with aridity. In arid regions, the FVC decay rate decreases with canopy height and tree cover fraction as expected for ecosystems with a more conservative water-use strategy. Thus, our observation-based products have large potential for better understanding complex vegetation–water interactions from regional to continental scales.

Reda ElGhawi

and 6 more

The process of evapotranspiration transfers water vapour from vegetation and soil surfaces to the atmosphere, the so-called latent heat flux (𝑄 LE), and thus crucially modulates Earth’s energy, water, and carbon cycles. Vegetation controls 𝑄 LE through regulating the leaf stomata (i.e., surface resistance 𝑟 s) and through altering surface roughness (aerodynamic resistance 𝑟 a). Estimating 𝑟 s and 𝑟 a across different vegetation types proves to be a key challenge in predicting 𝑄 LE. Here, we propose a hybrid modeling approach (i.e., combining mechanistic modeling and machine learning) for 𝑄 LE where neural networks independently learn the resistances from observations as intermediate variables. In our hybrid modeling setup, we make use of the Penman-Monteith equation based on the Big Leaf theory in conjunction with multi-year flux measurements across different forest and grassland sites from the FLUXNET database. We follow two conceptually different strategies to constrain the hybrid model to control for equifinality arising when estimating the two resistances simultaneously. One strategy is to impose an a priori constraint on 𝑟 a based on our mechanistic understanding (theory-driven strategy), while the other strategy makes use of more observational data and adds a constraint in predicting 𝑟 a through multi-task learning of the latent as well as the sensible heat flux (𝑄 H ; data-driven strategy). Our results show that all hybrid models exhibit a fairly high predictive skill for the target variables with 𝑅 2 = 0.82-0.89 for grasslands and 𝑅 2 = 0.70-0.80 for forests sites at the mean diurnal scale. The predictions of 𝑟 s and 𝑟 a show physical consistency across the two regularized hybrid models, but are physically implausible in the under-constrained hybrid model. The hybrid models are robust in reproducing consistent results for energy fluxes and resistances across different scales (diurnal, seasonal, interannual), reflecting their ability to learn the physical dependence of the target variables on the meteorological inputs. As a next step, we propose to test these heavily observation-informed parameterizations derived through hybrid modeling as a substitute for overly simple ad hoc formulations in Earth system models.

Chunhui Zhan

and 7 more

Elevated atmospheric CO2 (eCO2) influences the carbon assimilation rate and stomatal conductance of plants, and thereby can affect the global cycles of carbon and water. However, the extent to which these physiological effects of eCO2 influence the land-atmosphere exchange of carbon and water is uncertain. In this study, we aim at developing a method to detect the emergence of the physiological CO2 effects on various variables related to carbon and water fluxes. We use a comprehensive process-based land surface model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) to simulate the leaf-level effects of increasing atmospheric CO2 concentrations and their century-long propagation through the terrestrial carbon and water cycles across different climate regimes and biomes. We then develop a statistical method based on the signal-to-noise ratio to detect the emergence of the eCO2 effects. The signal in gross primary production (GPP) emerges at relatively low eCO2 (Δ[CO2] ~ 20 ppm) where the leaf area index (LAI) is relatively high. Compared to GPP, the eCO2 effect causing reduced 28 transpiration water flux (normalized to leaf area) emerges only at relatively high CO2 increase (Δ[CO2] >> 40 ppm), due to the high sensitivity to climate variability and thus lower signal-to-noise ratio. In general, the response to eCO2 is detectable earlier for variables of the carbon cycle than the water cycle, when plant productivity is not limited by climatic constraints, and stronger in forest-dominated rather than in grass- dominated ecosystems. Our results provide a step towards when and where we expect to detect physiological CO2 effects in in-situ flux measurements, how to detect them and encourage future efforts to improve the understanding and quantification of these effects in observations of terrestrial carbon and water dynamics.