Xinying Wang

and 2 more

Energy, transport, urbanization and burning are responsible for changes in atmospheric BC. This work uses direct solar atmospheric column measurements of single scatter albedo [SSA] retrieved at multiple wavelengths from AERONET at 68 Asian sites over 17 years. A MIE model is solved across the wavelengths using a core-shell mixing approximation to invert the probabilistic BC, shell size, and UV SSA. Orthogonal patterns are obtained for urban, biomass burning [BB], and long-range transport [LRT] conditions, which are used to analyze and attribute source types of BC across the region. Large urban areas (thought to be dominated by urban BC) are observations during targeted times (shorter than seasonally) to yield significant contributions from non-urban BC. BB and LRT are observed to dominate Beijing and Hong Kong 2 months a year. LRT is observed during the clean Asian Monsoon season in both Nepal and Hong Kong, with sources identified from thousands of kilometers away. Computing the shift in shell size required to constrain the results approximates secondary aerosol growth in-situ, and subsequently aerosol lifetime, which is found to range from 11 days to a month, implying both a significant amount of BC above the boundary layer, and that BC generally has a longer lifetime than PM2.5. These findings are outside of the range of most modeling studies focusing on PM2.5, but are consistent with independent measurements from SP2 and modeling studies of BC that use core-shell mixing together with high BC emissions.

Kai Qin

and 6 more

Current approaches to estimate NOx emissions fail to account for new and small sources, biomass burning, and sources which change rapidly in time, generally don’t account for measurement error, and are either based on models, or do not consider wind, chemistry, and dynamical effects. This work introduces a new, model-free analytical environment that assimilates daily TROPOMI NO2 measurements in a mass-conserving manner, to invert daily NOx emissions. This is applied over a rapidly developing and energy-consuming region of Northwest China, specifically chosen due to substantial economic and population changes, new environmental policies, large use of coal, and access to independent emissions measurements for validation, making this region representative of many rapidly developing regions found across the Global South. This technique computes a net NOx emissions gain of 70% distributed in a seesaw manner: a more than doubling of emissions in cleaner regions, chemical plants, and regions thought to be emissions-free, combined with a more than halving of emissions in city centers and at well-regulated steel and powerplants. The results allow attribution of sources, with major contributing factors computed to be increased combustion temperature, atmospheric transport, and in-situ chemical processing. It is hoped that these findings will drive a new look at emissions estimation and how it is related to remotely sensed measurements and associated uncertainties, especially applied to rapidly developing regions. This is especially important for understanding the loadings and impacts of short-lived climate forcers, and provides a bridge between remotely sensed data, measurement error, and models, while allowing for further improvement of identification of new, small, and rapidly changing sources.