Patricia MacQueen

and 12 more

Uturuncu volcano in southern Bolivia is a member of a distinctive class of volcanoes – systems that show unrest despite not having erupted in the Holocene. Uturuncu has not erupted in 250 kyr, but has been deforming (uplift with a moat of subsidence) for several decades, along with seismic swarms and active, sulfur-encrusted fumaroles. Our work builds on previous geophysical imaging at Uturuncu by jointly analyzing multidisciplinary datasets, focusing on imaging the shallow (<15 km depth below surface) structure of the system with geophysical and geochemical data. Whereas previous research pointed to andesite melt at depths >15 km depth, results were ambiguous as to what proportions of melts vs. brines are present at shallower depths. Identifying fluids (melt, brine, etc.) and structures at shallow depths is key for evaluating the hazard potential of the volcano and understanding the source of the unrest. We present new results from gravimetry, seismology (hypocenter relocation, seismic velocity and attenuation tomography), gas geochemistry, and InSAR observations. The results point to an extensive and active hydrothermal system extending ~20 km laterally and ~10 km vertically from Uturuncu, with possible connections at depth to the deeper magmatic system. A combined view of the new density, seismic velocity and attenuation models, and the existing resistivity model is crucial for revealing key features of the hydrothermal system: a vapour-rich conduit beneath Uturuncu (low resistivity/high attenuation column extending from 1.5 to 12.5 km depth), an extensive alteration zone surrounding Uturuncu (complex zone of annular shaped anomalies surrounding Uturuncu from 1.5 to 12.5 km depth), and a possible zone of sulfide deposition just below the western flank of Uturuncu at 1.5 km depth (high density/low resistivity/high attenuation). High fluxes of diffuse CO2 degassing at sub-magmatic temperatures and a small area directly above a low resistivity anomaly subsiding from 2014 to 2017 show that the hydrothermal system is currently active. Analyzed jointly, this multidisciplinary data set suggests that current activity within the shallow structure at Uturuncu is dominated by hydrothermal, rather than magmatic processes.

Kelly Devlin

and 11 more

If the university can be thought of as an incubator for ideas and thought leadership, then each department is a learning ecosystem unto itself. The IDEEAS (Inclusion, Diversity, and Equity in Earth and Atmospheric Sciences) Working Group formed organically in Cornell’s Earth and Atmospheric Sciences department as a grassroots group with a desire to improve the department ecosystem. Self-selected from the full cross-section of the department, our members comprise students, staff, researchers, faculty, and emeriti. IDEEAS is a non-hierarchical group within the very hierarchical setting of academia, and our work provides a model for disrupting traditional power structures while leveraging their influence to reimagine how an academic unit could and should function. IDEEAS is not a committee; we are a collective. We believe that, irrespective of rank or role, every member of the department community has the capacity to practice leadership. As such, we lead by action. Each IDEEAS project or initiative is organized around an action team, who collectively carry out a community-informed vision of the culture we would like to co-create with the rest of the department. Our commitment to collective leadership empowers constituencies (e.g., students, non-academic staff, post-docs) who have traditionally lacked a pathway to provide input or participate in department-level decision making. IDEEAS is developing formal channels of communication between the group and department leadership in an effort to develop a sustainable ecosystem that will outlive its founders. IDEEAS events combine community building and intentional learning opportunities to promote critical reflection and foster connections. Events included a well-attended kickoff party with facilitated conversation that drew 56 attendees (~40% of the department), and community conversations about implicit bias and structural racism. IDEEAS organizers have been critically responsive during ongoing COVID19 isolation, providing numerous opportunities for social connection and using the disruption as a catalyst to cultivate connection and build community resilience that will outlast the pandemic. We invite discussion and collaboration with those engaged in similar justice, equity, diversity, and inclusion work in the geosciences.