Jacob Buffo

and 3 more

Compositional heterogeneities within Europa’s ice shell likely impact the dynamics and habitability of the ice and subsurface ocean, but the total inventory and distribution of impurities within the shell is unknown. In sea ice on Earth, the thermochemical environment at the ice-ocean interface governs impurity entrainment into the ice. Here, we simulate Europa’s ice-ocean interface and bound the impurity load (1.053-14.72 g/kg (parts per thousand weight percent, or ppt) bulk ice shell salinity) and bulk salinity profile of the ice shell. We derive constitutive equations that predict ice composition as a function of the ice shell thermal gradient and ocean composition. We show that evolving solidification rates of the ocean and hydrologic features within the shell produce compositional variations (ice bulk salinities of 5-50% of the ocean salinity) that can affect the material properties of the ice. As the shell thickens, less salt is entrained at the ice-ocean interface, which implies Europa’s ice shell is compositionally homogeneous below ~ 1 km. Conversely, the solidification of water filled fractures or lenses introduces substantial compositional variations within the ice shell, creating gradients in mechanical and thermal properties within the ice shell that could help initiate and sustain geological activity. Our results suggest that ocean materials entrained within Europa’s ice shell affect the formation of geologic terrain and that these structures could be confirmed by planned spacecraft observations.

Jacob Buffo

and 11 more

Jacob Buffo

and 5 more

Non-ice impurities within the ice shells of ocean worlds (e.g., Europa, Enceladus, Titan) are believed to play a fundamental role in their geophysics and habitability and may become a surface expression of subsurface ocean properties. Heterogeneous entrainment and distribution of impurities within planetary ice shells have been proposed as mechanisms that can drive ice shell overturn, generate diverse geological features, and facilitate ocean-surface material transport critical for maintaining a habitable subsurface ocean. However, current models of ice shell composition suggest that impurity rejection at the ice-ocean interface of thick contemporary ice shells will be exceptionally efficient, resulting in relatively pure, homogeneous ice. As such, additional mechanisms capable of facilitating enhanced and heterogeneous impurity entrainment are needed to reconcile the observed physicochemical diversity of planetary ice shells. Here we investigate the potential for hydrologic features within planetary ice shells (sills and basal fractures), and the unique freezing geometries they promote, to provide such a mechanism. By simulating the two-dimensional thermal and physicochemical evolution of these hydrological features as they solidify, we demonstrate that bottom-up solidification at sill floors and horizontal solidification at fracture walls generate distinct ice compositions and provide mechanisms for both enhanced and heterogeneous impurity entrainment. We compare our results with magmatic and metallurgic analogs that exhibit similar micro- and macroscale chemical zonation patterns during solidification. Our results suggest variations in ice-ocean/brine interface geometry could play a fundamental role in introducing compositional heterogeneities into planetary ice shells and cryoconcentrating impurities in (re)frozen hydrologic features.