Zongshan Li

and 3 more

We develop a 3-D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land-based seismographs to investigate along-strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land-based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35-42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high-velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes.  The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VS reduction and VP/VS are larger than those determined using VP reduction in prior studies, likely due to water in cracks affecting VS more than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments.

Jacob Clarke

and 7 more

Oceanic plates experience extensive normal faulting as they bend and subduct, enabling fracturing of the crust and upper mantle. Debate remains about the relative importance of pre-existing faults, plate curvature and other factors in controlling the extent and style of bending-related faulting. The subduction zone off the Alaska Peninsula is an ideal place to investigate controls on bending-related faulting as the orientation of abyssal-hill fabric with respect to the trench and plate curvature vary along the margin. Here we characterize bending faulting between longitudes 161°W and 155ºW using newly collected multibeam bathymetry data. We also use a compilation of seismic reflection data to constrain patterns of sediment thickness on the incoming plate. Although sediment thickness increases by over 1 km from 156°W to 160°W, most sediments were deposited prior to the onset of bending faulting and thus have limited impact on the expression of bend-related fault strikes and throws in bathymetry data. Where magnetic anomalies trend subparallel to the trench (<30°) west of ~156ºW, bending faulting parallels magnetic anomalies, implying bending faulting reactivates pre-existing structures. Where magnetic anomalies are highly oblique (>30°) to the trench east of 156ºW, no bending faulting is observed. Summed fault throws increase to the west, including where pre-existing structure orientations do not vary between 157-161ºW, suggesting that the increase in slab curvature directly influences fault throws. However, the westward increase in summed fault throws is more abrupt than expected for changes in slab bending alone, suggesting potential feedbacks between pre-existing structures, slab dip, and faulting.

Douglas A. Wiens

and 5 more

Patagonia is one of the key places to study the interaction of plate tectonics and mantle flow patterns with geological processes. This part of the continent is shaped by the northward migration of the Chile Triple Junction, currently marked by subduction of the Chilean spreading ridge at latitude 46oS, opening a slab window beneath Southern Patagonia. The idea of slab window was hypothesized to explain the volcanic gap between north Patagonia and the southern part of the peninsula. The analysis of volcanic rock composition shows the transition between a domain with the signature of slab melt (metasomatized MORB) and a domain with no slab signature (OIB source mantle). Along the Pacific coast, other slab windows were suggested in Central America, California and North Cordillera. The analysis of uplifted terranes and seismic imaging tried to constrain the geometry of these slab windows and map the mantle flow pattern that controls the present-day surface expression (topography, volcanism distribution). From a limited seismic coverage, early studies mapped the Patagonian slab window from body wave tomography and shear wave splitting. The recent deployment of a temporary seismic array from 2018 to 2021 and the Chilean seismic networks fills the data gap between the seismically active northern part of Patagonia and the more poorly studied southern part. This presentation will show the results of our recent seismic studies in Patagonia and help constrain the geodynamical processes associated with the slab window. From the analysis of SKS and similar core phases, we determine the pattern of azimuthal seismic anisotropy resulting from the mantle flow pattern beneath South America. Fast splitting directions are generally NE-SW throughout most of Southern Patagonia, similar to the pattern of large-scale azimuthal seismic anisotropy from global and regional surface wave models. However, between 46oS - 48oS, we observe large splitting values and an E-W direction showing the effect of the slab edge. This is consistent with models of rapid upper mantle flow from the Pacific around the southern edge of the Nazca slab. Seismic imaging using receiver functions and Rayleigh waves from earthquakes and ambient noise show very low upper mantle velocities and an absence of mantle lithosphere in this region, suggesting the lithosphere has been thermally eroded by the dynamics of the slab window. We will also show and discuss preliminary results of a body wave tomographic analysis of the same seismic station dataset.

Walid Ben Mansour

and 2 more

The supercontinent Gondwana broke up 200 Myrs ago in smaller continents known today as South America, Africa, India, Australia, Antarctica. In the last twenty years, extensive petrological, geochemical, and geophysical studies were done in Australia and South Africa. Still, models of the post-Gondwana lithospheric mantle evolution are constrained by sparse geochemical analysis and/or numerical modelling. Access to different scale geophysical datasets allow applying joint inversion framework to better constrain the present-day physical state of cratonic lithosphere. Here we use a 3D multi-observable inversion method based on a probabilistic (Bayesian) formalism. This approach constrains the present-day thermochemical structure (temperature and major element composition) of the mantle using the sensitivity of multi-geophysical datasets within a thermodynamically consistent Bayesian framework, solved with state-of-the-art Markov Chain Monte Carlo algorithms. This presentation will show recent thermochemical tomography of central-southern Africa, Antarctica, South America, and Australia at a resolution of 1°x1°. We will show new thermal lithospheric thickness and the average chemical composition of the lithospheric mantle maps beneath these Gondwana terranes. We will discuss the evolution of cratonic lithosphere derived from our modelling and previously suggested by comparing it with external observables (xenolith/xenocrysts thermo-barometry analysis, hotspot tracks reconstruction, volcanism). This contribution will address the following questions: 1. How thick, cold and depleted is the cratonic lithosphere beneath Gondwana terranes? 2. How did mantle plumes affect the thermochemical structure in the last 200 Myrs? 3. What can geophysical data and paleo reconstruction tell us about the evolution of the cratonic lithosphere?