Cameron McErlich

and 3 more

ERA5 reanalysis output is compared to WindSat measurements over cyclones at Southern Hemisphere mid- to high-latitudes. WindSat provides an independent measure of how well ERA5 represents cyclones, as WindSat is not assimilated into ERA5. We implement a tracking scheme to identify cyclone centres and tracks, before using cyclone composites to match concurrent data in ERA5 and WindSat. We find that both ERA5 and WindSat show comparable spatial structures for low level wind speed, total column water vapour, cloud liquid water and precipitation. Compared to WindSat, ERA5 underestimates total column water vapour by up to 5\% and cloud liquid water by up to 40\%. ERA5 underestimates precipitation in the warm sector by up to 15\%, but overestimates in the cold sector by up to 60\%. Similar biases in ERA5 are seen when comparing to AMSR-E data, even though AMSR-E radiances are assimilated into ERA5. Comparing ERA5 and WindSat across the cyclone lifecycle, a strong correlation is seen across the cyclone as it deepens and reaches peak intensity, before slightly declining as the cyclone decays. In the cold sector ERA5 shows underestimation of cloud liquid water, yet overestimates precipitation at all lifecycle stages. However, in the warm sector precipitation is underestimated. This potentially suggests the presence of biases within the ERA5 parameterisations of cloud and precipitation causing a disconnect between the two. Despite this, ERA5 shows strong correlation with WindSat and determines cyclone structure well across the cyclone lifecycle, showing its value for use in cyclone compositing analysis.

Cameron McErlich

and 3 more

The 2B-CLDCLASS-LIDAR R05 (2BCL5) and the raDAR/liDAR (DARDAR) satellite retrievals of cloud occurrence are compared as a function of altitude and latitude. The largest disparities are observed at low altitudes over high southern latitudes. These datasets are cross referenced to ground–based measurements from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station, Antarctica. Compared to AWARE observations, both 2BCL5 and DARDAR underestimate cloud occurrence below 1.5 km, with 2BCL5 and DARDAR distinguishing roughly one third of cloud occurrences observed by AWARE at 0.5 km. While DARDAR identifies greater cloud occurrences than 2BCL5 below 1.5 km, cloud occurrence values for the two datasets have similar differences relative to ground-based measurements. Therefore, the DARDAR retrievals of greater cloud occurrence at low altitudes are likely due to a larger quantity of false positives associated with radar ground clutter or attenuated lidar retrievals. DARDAR cloud occurrences match better with AWARE than 2BCL5 above 5 km. However, the likely underestimation of ground-based measurements at higher altitudes suggests DARDAR may underestimate high level cloud occurrence. Finally, both datasets indicate the presence of liquid containing clouds at temperatures within the homogeneous freezing regime, despite the fact that the ECMWF-AUX dataset implemented in their processing clearly indicates temperatures below -38 °C. Using AWARE radiosonde (ECMWF-AUX) temperature data, we find that 2BCL5 detects 13.3% (13.8%) of mixed phase clouds below -38 °C, while DARDAR detects 5.7% (6.6%) of mixed phase and 1.1% (1.3%) of liquid phase clouds below -38 °C.