Gustaf Hugelius

and 42 more

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern permafrost region is projected to weaken or shift under climate change. But large uncertainties remain, even on present-day GHG budgets. We compare bottom-up (data-driven upscaling, process-based models) and top-down budgets (atmospheric inversion models) of the main GHGs (CO2, CH4, and N2O) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches estimate higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric inversions. Both bottom-up and top-down approaches respectively show a net sink of CO2 in natural ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but sources of CH4 (38 (23, 53) and 15 (11, 18) Tg CH4-C yr-1) and N2O (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N2O-N yr-1) in natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including anthropogenic emissions, the combined GHG budget is a source of 147 (-492, 759) Tg CO2-Ceq yr-1 (GWP100). A net CO2 sink in boreal forests and wetlands is offset by CO2 emissions from inland waters and CH4 emissions from wetlands and inland waters, with a smaller additional warming from N2O emissions. Priorities for future research include representation of inland waters in process-based models and compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more in-situ flux observations and improved resolution in upscaling.

Nima Madani

and 10 more

Phytoplankton primary production is a crucial component of Arctic Ocean (AO) biogeochemistry, playing a pivotal role in the carbon cycling by supporting higher trophic levels and removing atmospheric carbon dioxide. The advent of satellite observations measuring chlorophyll a concentration (Chl_ a) has yielded unprecedented insights into the distribution of AO phytoplankton, enhancing our ability to assess oceanic productivity. However, the optical properties of AO waters differ significantly from those of lower‐latitude waters, and standard Chl_a algorithms perform poorly in the AO. In particular, Chl_a retrievals are challenged by interferences from other marine constituents including higher pigment packaging and higher proportion of light absorption by colored dissolved organic matter. To derive phytoplankton-originating signature as well as mitigate those effects, solar-induced chlorophyll fluorescence (SIF) emerges as a valuable tool for acquiring physiological insights into the direct photosynthetic processes in the AO. In this study, we leverage satellite-based SIF measurements to assess their correlation with a set of predictive factors influencing phytoplankton photosynthesis. We extend the temporal coverage of AO SIF data to cover the period 2004 - 2020. This novel dataset offers a pathway to monitor the physiological interactions of phytoplankton with changes in climate, promising to significantly improve our understanding of the Arctic water’s productivity. The application of this data is expected to provide insights into how phytoplankton respond to shifts in environmental changes, contributing to a more nuanced understanding of their role in High-Latitude Northern Oceans ecosystems.

Benjamin Gaubert

and 29 more

Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern tropical Africa (NTA), spanning 0-24◦N, remains large. Satellite-based estimates of an annual source of 0.8-1.45 PgC yr−1 challenge our understanding of tropical and global carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic Ocean by the NASA Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints on tropical African CO2 fluxes using flux-concentration relationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1 (mean and standard deviation) for NTA, 2016-2018. The satellite-based flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.