Adriana Settino

and 12 more

Hiroshi Hasegawa

and 5 more

We present in-depth analysis of three southward-moving meso-scale (ion- to magnetohydrodynamic-scale) flux transfer events (FTEs) and subsequent crossing of a reconnecting electron-scale current sheet (ECS), which were observed on 8 December 2015 by the Magnetospheric Multiscale spacecraft near the subsolar magnetopause under southward and duskward magnetosheath magnetic field conditions. Our aims are to understand the generation mechanism of ion-scale magnetic flux ropes (ISFRs) and to reveal causal relationship among magnetic structures of the ECS, electromagnetic energy conversion, and kinetic processes in magnetic reconnection layers. Magnetic field reconstruction methods show that a flux rope with a length of about one ion inertial length existed and was growing in the ECS, supporting the idea that ISFRs can be generated from secondary magnetic reconnection in ECS. Grad-Shafranov reconstruction applied to the three FTEs shows that the FTE flux ropes had axial orientations similar to that of the ISFR in the ECS. This suggests that these FTEs also formed through the same secondary reconnection process, rather than multiple X-line reconnection at spatially separated locations. Four-spacecraft observations of electron pitch-angle distributions and energy conversion rate suggest that the ISFR had three-dimensional magnetic topology and secondary reconnection was patchy or bursty. Previously reported positive and negative values of , with magnitudes much larger than expected for typical magnetopause reconnection, were seen in both magnetosheath and magnetospheric separatrix regions of the ISFR. Many of them coexisted with bi-directional electron beams and intense electric field fluctuations around the electron gyrofrequency, consistent with their origin in separatrix activities.

Hiroshi Hasegawa

and 10 more

The Kelvin-Helmholtz instability (KHI) at Earth’s magnetopause and associated turbulence are suggested to play a role in the transport of mass and momentum from the solar wind into Earth’s magnetosphere. We investigate electromagnetic turbulence observed in KH vortices encountered at the dusk flank magnetopause by the Magnetospheric Multiscale (MMS) spacecraft under northward interplanetary magnetic field (IMF) conditions in order to reveal its generation process, mode properties, and role. A comparison with another MMS event at the dayside magnetopause with reconnection but no KHI signatures under a similar IMF condition indicates that while high-latitude magnetopause reconnection excites a modest level of turbulence in the dayside low-latitude boundary layer, the KHI further amplifies the turbulence, leading to magnetic energy spectra with a power-law index –5/3 at magnetohydrodynamic scales even in its early nonlinear phase. The mode of the electromagnetic turbulence is analyzed with a single-spacecraft method based on Ampère’s law, developed by Bellan (2016), for estimating wave vectors as a function of spacecraft-frame frequency. The results suggest that the turbulence does not consist of propagating normal-mode waves, but is due to interlaced magnetic flux tubes advected by plasma flows in the vortices. The turbulence at sub-ion scales in the early nonlinear phase of the KHI may not be the cause of the plasma transport across the magnetopause, but rather a consequence of three-dimensional vortex induced reconnection, the process that can cause an efficient transport by producing tangled reconnected field lines.

Hiroshi Hasegawa

and 21 more

We present observations in Earth’s magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard collisionless reconnection, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.

Hiroshi Hasegawa

and 2 more

A method based on electron magnetohydrodynamics (EMHD) for the reconstruction of steady, two-dimensional plasma and magnetic field structures from data taken by a single spacecraft, first developed by Sonnerup et al. (2016), is extended to accommodate inhomogeneity of the electron density and temperature, electron inertia effects, and guide magnetic field in and around the electron diffusion region (EDR), the central part of the magnetic reconnection region. The new method assumes that the electron density and temperature are constant along, but may vary across, the magnetic field lines. We present two models for the reconstruction of electron streamlines, one of which is not constrained by any specific formula for the electron pressure tensor term in the generalized Ohm’s law that is responsible for electron unmagnetization in the EDR, and the other is a modification of the original model to include the inertia and compressibility effects. Benchmark tests using data from fully kinetic simulations show that our new method is applicable to both antiparallel and guide-field (component) reconnection, and the electron velocity field can be better reconstructed by including the inertia effects. The new EMHD reconstruction technique has been applied to an EDR of magnetotail reconnection encountered by the Magnetospheric Multiscale spacecraft on 11 July 2017, reported by Torbert et al. (2018) and reconstructed with the original inertia-less version by Hasegawa et al. (2019), which demonstrates that the new method better performs in recovering the electric field and electron streamlines than the original version.

Takuma Nakamura

and 7 more

At the Earth’s magnetopause, the Kelvin-Helmholtz (KH) instability, driven by the persistent velocity shear between the magnetosheath and the magnetosphere, has been frequently observed during northward interplanetary magnetic field (IMF) periods and considered as one of the most important candidates for transporting and mixing plasmas across the magnetopause. However, how this process interacts with magnetic field fluctuations, which persistently exist near the magnetopause, has been less discussed. Here we perform a series of 2-D fully kinetic simulations of the KH instability at the magnetopause considering a power-law spectrum of initial fluctuations in the magnetic field. The simulations demonstrate that when the amplitude level of the initial fluctuations is sufficiently large, the KH instability evolves faster, leading to a more efficient plasma mixing within the vortex layer. In addition, when the spectral index of the initial fluctuations is sufficiently small, the modes whose wavelength is longer than the theoretical fastest growing mode grow dominantly. The fluctuating magnetic field also results in the formation of the well-matured turbulent spectrum with a -5/3 index within the vortex layer even in the early non-linear growth phase of the KH instability. The obtained spectral features in the simulations are in reasonable agreement with the features in KH waves events at the magnetopause observed by the Magntospheric Multiscale (MMS) mission and conjunctively by the Geotail and Cluster spacecraft. These results indicate that the magnetic field fluctuations may really contribute to enhancing the wave activities especially for longer wavelength modes and the associated mixing at the magnetopause.