Ya Wang

and 4 more

Intense fishing pressure and climate change are major threats to fish populations and coastal fisheries. Larimichthys crocea (large yellow croaker) is a long-lived fish, which performs seasonal migrations from its spawning and nursery grounds along the coast of the East China Sea (ECS) to overwintering grounds offshore. This study used length-based analysis and habitat suitability index (HSI) model to evaluate current life-history parameters and overwintering habitat suitability of L. crocea, respectively. We compared recent (2019) and historical (1971-1982) life-history parameters and overwintering HSI to analyze the fishing pressure and climate change effects on the overall population and overwintering phase of L. crocea. The length-based analysis indicated serious overfishing of L. crocea, characterized by reduced catch yield, size truncation, constrained distribution, and advanced maturation causing a recruitment bottleneck. The overwintering HSI modeling results indicated that climate change has led to decreased sea surface temperature during L. crocea overwintering phase over the last half-century, which in turn led to area decrease and an offshore-oriented shifting of optimal overwintering habitat of L. crocea. The fishing-caused size truncation may have constrained the migratory ability and distribution of L. crocea subsequently leading to the mismatch of the optimal overwintering habitat against climate change background, namely habitat bottleneck. Hence, while heavily fishing was the major cause of L. crocea collapse, climate-induced overwintering habitat suitability may have intensified the fishery collapse of L. crocea population. It is important for management to take both overfishing and climate change issues into consideration when developing stock enhancement activities and policy regulations, particularly for migratory long-lived fish that share a similar life history to L. crocea. Combined with China’s current restocking and stock enhancement initiatives, we propose recommendations for future restocking of L. crocea in China.

XIN GUO

and 6 more

Marine microbial flagellates form an important part of marine ecosystems, and play an essential role in maintaining ecosystem functions. However, the underlying biogeographic processes and ecological effects that shape marine microbial flagellate communities (MFCs) on the geographical scale (~ 2,000 km) remain unclear, especially how their composition is related to movements of water masses. In this study, high-throughput sequencing of 18S rRNA genes was conducted to survey two size-fractioned groups (0.8–2.0 μm for pico-sized and 2.0–20 μm for nano-sized groups) of MFCs in three subtropic-tropic marginal seas of China. Furthermore, the impacts of environmental factors, spatial factors, and water masses on MFCs were explored and compared across different spatiotemporal conditions. The results demonstrate non-random biogeographic distributions of MFCs in the studied area. These distributions were affected by several ecological processes, such as environmental selection, dispersal limitation, neutral process, and interactions within communities. These processes were driven by complex water masses that formed on a geographical scale. Notably, environmental heterogeneity was identified as the principal determinant of MFCs in each sea area. However, the importance of spatial factors increased with the spatial scale, which weakened biotic interactions within the community on a geographical scale. This effect was more apparent in nano-sized MFCs, indicating stronger dispersal limitation because of their larger cells and weaker dispersal ability. In summary, this study expands the available knowledge on the dynamic biogeographic patterns of MFCs associated with water masses on a geographical scale where strong spatial and environmental gradients exist.

Ya Wang

and 4 more

Intense fishing pressure and climate change are major threats to coastal fisheries. Larimichthys crocea (large yellow croaker) is a long-lived fish, which performs seasonal migrations from its spawning and nursery grounds along the coast of the East China Sea (ECS) to overwintering grounds offshore. This study used length-based analysis and habitat suitability index (HSI) model to evaluate current life-history parameters and overwintering habitat suitability of L. crocea, respectively. We compared both life-history parameters and overwintering HSI between recent (2019) and historical (between 1971 to 1982) to analyze the fishing pressure and climate change effects on the overall population and overwintering phase of L. crocea. In the context of overfishing, the length-based analysis indicated serious overfishing of L. crocea, characterized by reduced catch yield, size truncation, constrained distribution, and advanced maturation in the ECS, namely recruitment bottleneck. In the context of climate change, the overwintering HSI modeling results indicated that climate change has led to decreased sea surface temperature during L. crocea overwintering phase over the last half-century, which in turn led to area decrease and an offshore-oriented shifting of optimal overwintering habitat. The fishing-caused size truncation may constrain the migratory ability and distribution of L. crocea, subsequently led to the mismatch of the optimal overwintering habitat against climate change background, namely habitat bottleneck. Hence, while heavily fishing was the major cause of L. crocea fishery collapse, climate-induced overwintering habitat suitability may have intensified the fishery collapse of L. crocea population. It is important for management to take both overfishing and climate change issues into consideration when developing stock enhancement activities and policy regulations, particularly for migratory long-lived fish that share a similar life history to L. crocea. Combined with China’s current restocking and stock enhancement initiatives, we propose recommendations for future restocking of L. crocea in China.