The interception of rainfall by plant canopies alters the depth and spatial distribution of water arriving at the soil surface, and thus the location, volume, and depth of infiltration. Mechanisms like stemflow are well known to concentrate rainfall and route it deep into the soil, yet other mechanisms of flow concentration are poorly understood. This study characterises pour points, formed by the detachment of water flowing on the lower surface of a branch, using a combination of field observations in Western Australian banksia woodlands and rainfall simulation experiments on Banksia menziesii branches. We aim to establish the hydrological significance of pour points in a water-limited woodland ecosystem, along with the features of the canopy structure and rainfall that influence pour point formation and fluxes. Pour points were common in the woodland and could be identified by visually inspecting trees. Water fluxes at pour points were upto 15 times rainfall and were usually comparable to or greater than stemflow. Soil water content beneath pour points was greater than in adjacent control profiles, with 20-30% of seasonal rainfall volume infiltrated into the top 1m of soil beneath pour points, compared to 5% in controls. Rainfall simulations showed that pour points amplified the spatial heterogeneity of throughfall, violating water balance closure assumptions. The simulation experiments demonstrated that pour point fluxes depend on the interaction of branch angle and foliation for a given branch architecture. Pour points can play a significant part in the water balance, depending on their density and rainfall concentration ability.
Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration while increasing erosion and flooding from post-fire rainfall. Post-fire soil water repellency degrades over time, often in response to repeated wetting and drying of the soil. However, in mountainous fire-prone forests such as those in the Western USA, the fire season often terminates in a cold and wet winter, during which soils not only wet and dry, but also freeze and thaw. Little is know about the effect of repeated freezing and thawing of soil on the breakdown of post-fire hydrophobicity. This study characterized the changes in hydrophobicity of Sierra Nevada mountain soils exposed to different combinations of wet-dry and freeze-thaw cycling. Following each cycle, hydrophobicity was measured using the Molarity of Ethanol test. Hydrophobicity declined similarly across all experiments that included a wetting cycle. Repeated freezing and thawing of dry soil did not degrade soil water repellency. Total soil organic matter content was not different between soils of contrasting hydrophobicity. Macroscopic changes such as fissures and cracks were observed to form as soil hydrophobicity decayed. Microscopic changes revealed by scanning electron microscope imagery suggest different levels of soil aggregation occurred in samples with distinct hydrophobicities, although the size of aggregates was not clearly correlated to the change in water repellency due to wet-dry and freeze-thaw cycling. A nine year climate and soil moisture record from Providence Critical Zone Observatory was combined with the laboratory results to estimate that hydrophobicity would persist an average of 144 days post-fire at this well-characterized, typical mid-elevation Sierra Nevada site. Most of the breakdown in soil water repellency (79%) under these climate conditions would be attributable to freeze-thaw cycling, underscoring the importance of this process in soil recovery from fire in the Sierra Nevada.

Liya Weldegebriel

and 3 more

Efforts to tackle land degradation worldwide have spurred the adoption of soil and water conservation (SWC) practices intended to reduce surface runoff and erosion. Despite their widespread implementation, missing or incomplete monitoring remains a pervasive problem preventing evaluation of how well SWC practices meet these aims. Key metrics to evaluate SWC efficacy are the production of flow per unit rainfall (runoff ratio), and exported sediment (sediment concentration). We develop a method to assess changes in these metrics in the absence of a flow rating curve, using more complete and reliable measurements of stage (flow depth). We apply these methods to incomplete monitoring datasets collected from five watersheds included in the Tana and Beles Integrated Water Resource Development Project (TBIWRDP) in the Abay (Blue Nile) basin, Ethiopia. Changes in runoff ratio and sediment concentration relative to the first year of treatment varied by season. In the long wet season (Kiremt) that generates most runoff and erosion, reductions in runoff ratio occurred in three watersheds, and reductions in sediment concentration in four watersheds. Reductions in the runoff ratio were directly proportional to the areal density of SWC treatments in the watersheds, suggesting that SWC treatments were effective in controlling runoff and erosion. We suggest that stage and sediment concentration information can be used to assess watershed responses to SWC treatments. Focusing on these relatively robust measurements, may facilitate the design of reliable and affordable monitoring programs, and ultimately facilitate improved financing approaches based on reasonable estimates of likely SWC practice performance.