Dong Lin

and 14 more

Solar eruptions cause geomagnetic storms in the near-Earth environment, creating spectacular aurorae visible to the human eye and invisible dynamic changes permeating all of geospace. Just equatorward of the aurora, radars and satellites often observe intense westward plasma flows called subauroral polarization streams (SAPS) in the dusk-to-midnight ionosphere. SAPS occur across a narrow latitudinal range and lead to intense frictional heating of the ionospheric plasma and atmospheric neutral gas. SAPS also generate small-scale plasma waves and density irregularities that interfere with radio communications. As opposed to the commonly observed duskside SAPS, intense eastward subauroral plasma flows in the morning sector were recently discovered to have occurred during a super storm on 20 November 2003. However, the origin of these flows termed “dawnside SAPS” could not be explained by the same mechanism that causes SAPS on the duskside and has remained a mystery. Through real-event global geospace simulations, here we demonstrate that dawnside SAPS can only occur during major storm conditions. During these times the magnetospheric plasma convection is so strong as to effectively transport ions to the dawnside, whereas they are typically deflected to the dusk by the energy-dependent drifts. Ring current pressure then builds up on the dawnside and drives field-aligned currents that connect to the subauroral ionosphere, where eastward SAPS are generated. The origin of dawnside SAPS explicated in this study advances our understanding of how the geospace system responds to strongly disturbed solar wind driving conditions that can have severe detrimental impacts on human society and infrastructure.

Dong Lin

and 14 more

Strong subauroral plasma flows were observed in the dawnside ionosphere during the 20 November 2003 super geomagnetic storm. They are identified as dawnside subauroral polarization streams (SAPS) in which plasma drift direction is eastward and opposite to the westward SAPS typically found in the dusk sector. Both dawnside and duskside SAPS are driven by the enhanced meridional electric field in the low latitude portion of Region-2 field-aligned currents (FACs) in the subauroral region where ionospheric conductance is relatively low. However, dawnside eastward SAPS were only observed in the main and recovery phases while duskside westward SAPS were found much earlier before the sudden storm commencement. Simulations with the Multiscale Atmosphere-Geospace Environment (MAGE) model demonstrate that the eastward SAPS are associated with dawnside ring current build-up. Unlike the duskside where ring current build-up and SAPS formation can occur under moderate driving conditions, strong magnetospheric convection is required for plasmasheet ions to overcome their energy-dependent drifts to effectively build up the dawnside ring current and upward Region-2 FACs. We further used test particle simulations to show the characteristic drift pattern of energetic protons under strong convection conditions and how they are related to the dawnside SAPS occurrence. This study demonstrates the connection between the level of solar wind driving condition and a rare ionospheric structure, eastward SAPS on the dawnside, which only occur under strong convection typically associated with intense or super storms. Dawnside SAPS are suggested as a unique feature of major geomagnetic storms.

Erdal Yiğit

and 6 more

Using the horizontal neutral wind observations from the MIGHTI instrument onboard NASA’s ICON (Ionospheric Connection Explorer) spacecraft with continuous coverage, we determine the climatology of the mean zonal and meridional winds and the associated mean circulation at low- to middle latitudes (10S-45N) for Northern Hemisphere solstice conditions between 90 km and 200 km altitudes, specifically on 20 June 2020 solstice as well as for a one-month period from 8 June-7 July 2020. The data are averaged within appropriate altitude, longitude, latitude, solar zenith angle, and local time bins to produce mean wind distributions. The geographical distributions and local time variations of the mean horizontal circulation are evaluated. The instantaneous horizontal winds exhibit a significant degree of spatiotemporal variability often exceeding ~150 m/s. The daily averaged zonal mean winds demonstrate day-to-day variability. Eastward zonal winds and northward (winter-to-summer) meridional winds are prevalent in the lower thermosphere, which provides indirect observational evidence of the eastward momentum deposition by small-scale gravity waves. The mean neutral winds and circulation exhibit smaller scale structures in the lower thermosphere (90-120 km), while they are more homogeneous in the upper thermosphere, indicating the increasingly dissipative nature of the thermosphere. The mean wind and circulation patterns inferred from ICON/MIGHTI measurements can be used to constrain and validate general circulation models, as well as input for numerical wave models.
This paper examined the variability of equatorial thermospheric meridional and zonal wind speeds at night-time using an optical Fabry–Perot interferometer (FPI) located in Abuja, Nigeria (Geographic: 8.99°N, 7.39°E; Geomagnetic latitude: -1.60). The study period covered 9 months with useable data of 139 nights between March 2016 and January 2018. The hourly zonal wind speed is between 19.33 and 250 ms-1 and that of the meridional wind ranged between 0 and 200 ms-1. These speeds are greater than those reported in other longitudinal sectors, and this could be one of the reasons responsible for reduced EXB drift in this region compared to other regions. Comparison of FPI ground-based measurements with estimates from the Horizontal Wind Model (HWM-14) accurately reproduced the meridional component, but for some departure of ~45 ms-1 in May and June 2016, and January 2018. A very good agreement is observed between the predicted and measured zonal winds speed in the months of 2017. However, the HWM-14 overestimated the zonal wind speed in the early evening values by ~30 ms-1 and underestimated the post-midnight values by a larger factor in December 2017. Hence, this necessitates a call for improvement of the HWM-14 by using newly observed data in order to better characterize the West African sector. The varying zonal winds showed modal periods of 25.9 and 133.5 days, which are quasi 27-days and quasi-terannual periodic variations, respectively. On the meridional wind, oscillatory periods of 133.5 and 23.1 days are seen in year 2016 and 2017, respectively.