Henry Manelski

and 8 more

During the first 2934 sols of the Curiosity rover’s mission 33,468 passive visible/near-infrared reflectance spectra were taken of the surface by the mast-mounted ChemCam instrument on a range of target types. ChemCam spectra of bedrock targets from the Murray and Carolyn Shoemaker formations on Mt. Sharp were investigated using principal component analysis (PCA) and various spectral parameters including the band depth at 535 nm and the slope between 840 nm and 750 nm. Four endmember spectra were identified. Passive spectra were compared to Laser Induced Breakdown Spectroscopy (LIBS) data to search for correlations between spectral properties and elemental abundances. The correlation coefficient between FeOT reported by LIBS and BD535 from passive spectra was used to search for regions where iron may have been added to the bedrock through oxidation of ferrous-bearing fluids, but no correlations were found. Rocks in the Blunts Point-Sutton Island transition that have unique spectral properties compared to surrounding rocks, that is flat near-infrared (NIR) slopes and weak 535 nm absorptions, are associated with higher Mn and Mg in the LIBS spectra of bedrock. Additionally, calcium-sulfate cements, previously identified by Ca and S enrichments in the LIBS spectra of bedrock, were also shown to be associated with spectral trends seen in Blunts Point. A shift towards steeper near-infrared slope is seen in the Hutton interval, indicative of changing depositional conditions or increased diagenesis.
Images from the Mars Science Laboratory (MSL) mission of lacustrine sedimentary rocks of Vera Rubin ridge on “Mt. Sharp” in Gale crater, Mars, have shown stark color variations from red to purple to gray. These color differences cross-cut stratigraphy and are likely due to diagenetic alteration of the sediments after deposition. However, the chemistry and timing of these fluid interactions is unclear. Determining how diagenetic processes may have modified chemical and mineralogical signatures of ancient martian environments is critical for understanding the past habitability of Mars and achieving the goals of the MSL mission. Here we use visible/near-infrared spectra from Mastcam and ChemCam to determine the mineralogical origins of color variations in the ridge. Color variations are consistent with changes in spectral properties related to the crystallinity, grain size, and texture of hematite. Coarse-grained gray hematite spectrally dominates in the gray patches and is present in the purple areas, while nanophase and fine-grained red crystalline hematite are present and spectrally dominate in the red and purple areas. We hypothesize that these differences were caused by grain size coarsening of hematite by diagenetic fluids, as observed in terrestrial analogs. In this model, early primary reddening by oxidizing fluids near the surface was followed during or after burial by bleaching to form the gray patches, possibly with limited secondary reddening after exhumation. Diagenetic alteration may have diminished the preservation of biosignatures and changed the composition of the sediments, making it more difficult to interpret how conditions evolved in the paleolake over time.

Melissa Rice

and 16 more

The Mars Science Laboratory (MSL) Curiosity rover has explored over 400 meters of vertical stratigraphy within Gale crater to date. These fluvio-deltaic, lacustrine, and aeolian strata have been well-documented by Curiosity’s in-situ and remote science instruments, including the Mast Camera (Mastcam) pair of multispectral imagers. Mastcam visible to near-infrared (VNIR) spectra can broadly distinguish between iron phases and oxidation states, and in combination with chemical data from other instruments, Mastcam spectra can help constrain mineralogy, depositional origin, and diagenesis. However, no traverse-scale analysis of Mastcam multispectral data has yet been performed. We compiled a database of Mastcam spectra from >600 multispectral observations and 1 quantified spectral variations across Curiosity’s traverse through Vera Rubin ridge (sols 0-2302). From principal component analysis and an examination of spectral parameters, we identified 9 rock spectral classes and 5 soil spectral classes. Rock classes are dominated by spectral differences attributed to hematite and other oxides (due to variations in grain size, composition, and abundance) and are mostly confined to specific stratigraphic members. Soil classes fall along a mixing line between soil spectra dominated by fine-grained Fe-oxides and those dominated by olivine-bearing sands. By comparing trends in soil vs. rock spectra, we find that locally derived sediments are not significantly contributing to the spectra of soils. Rather, varying contributions of dark, mafic sands from the active Bagnold Dune field is the primary spectral characteristic of soils. These spectral classes and their trends with stratigraphy provide a basis for comparison in Curiosity’s ongoing exploration of Gale crater.

Lauren Ashley Edgar

and 14 more

For ~ 500 sols, the Mars Science Laboratory team explored Vera Rubin ridge (VRR), a topographic feature on the northwest slope of Aeolis Mons. Here we review the sedimentary facies and stratigraphy observed during sols 1800-2300, covering more than 100 m of stratigraphic thickness. Curiosity’s traverse includes two transects across the ridge, which enables studies of lateral variability over a distance of ~ 300 m. Three informally named stratigraphic members of the Murray formation are described: Blunts Point, Pettegrove Point, and Jura, with the latter two forming the ridge. The Blunts Point member, exposed just below the ridge, is characterized by a recessive, fine-grained facies that exhibits extensive planar lamination and is crosscut by abundant curviplanar veins. The Pettegrove Point member is more resistant, fine-grained, thinly planar laminated, and contains a higher abundance of diagenetic concretions. Conformable above the Pettegrove Point member is the Jura member, which is also fine-grained and parallel stratified, but is marked by a distinct step in topography which coincides with meter-scale inclined strata, a thinly and thickly laminated facies, and occasional crystal molds. All members record low-energy lacustrine deposition, consistent with prior observations of the Murray formation. Uncommon outcrops of low-angle stratification suggest possible subaqueous currents, and steeply inclined beds may be the result of slumping. Collectively, the rocks exposed at VRR provide additional evidence for a long-lived lacustrine environment (in excess of 10^6 years via comparison to terrestrial records of sedimentation), which extends our understanding of the duration of habitable conditions in Gale crater.