Corentin Kenelm Louis

and 15 more

Dale Michael Weigt

and 9 more

To help understand and determine the driver of jovian auroral X-rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalogue we explore dates from 18 December 2000 up to and including 8 September 2019. Using a numerical criterion, we characterize the typical and extreme behaviour of the concentrated NHS emissions across the catalogue. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X-ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼ 1.2 R. We use a flux equivalence mapping model to link this distinct region of X-ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre-dusk to pre-midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X-ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi-periodic oscillations (QPOs) in the NHS photons ranging from ∼ 2.3-min to 36.4-min, suggesting possible links with ultra-low frequency activity on the magnetopause boundary (e.g. dayside reconnection, Kelvin-Helmholtz instabilities).

Baptiste Cecconi

and 26 more

The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically < 50 to 100 MHz). The four main radio sources observed in this frequency are the Earth, the Sun, Jupiter and Saturn. They are observed either from ground (down to 10 MHz) or from space (down to a few kHz). Ground observatories are more sensitive than space observatories and capture high resolution data streams (up to a few TB per day for modern instruments). Conversely, space-borne instruments can observe below the ionospheric cut-off (10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physcis data. Data visualization tools developed by the CDPP (, Centre de Données de la Physique des Plasmas, in Toulouse, France) and the University of Iowa (Autoplot, are available to display and analyse space physics time series and spectrograms. A planetary radio emission simulation software is developed in LESIA (ExPRES: Exoplanetary and Planetary Radio Emission Simulator). The VESPA (Virtual European Solar and Planetary Access) provides a search interface that allows to discover data of interest for scientific users, and is based on IVOA standards (astronomical International Virtual Observatory Alliance). The University of Iowa also develops Das2server that allows to distribute data with adjustable temporal resolution. MASER is making use of all these tools and standards to distribute datasets from space and ground radio instruments available from the Observatoire de Paris, the Station de Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD… MASER also includes a Python software library for reading raw data. This work is supported by CDPP, CNES, PADC and Europlanet-2020-RI. The Europlanet 2020 Research Infrastructure project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208.
We present a statistical study of Jupiter’s disk X-ray emissions using 19 years of Chandra X-Ray Observatory (CXO) observations. Previous work has suggested that these emissions are consistent with solar X-rays elastically scattered from Jupiter’s upper atmosphere. We showcase a new Pulse Invariant (PI) filtering method that minimises instrumental effects which may produce unphysical trends in photon counts across the nearly-two-decade span of the observations. We compare the CXO results with solar X-ray flux data from the Geostationary Operational Environmental Satellites (GOES) X-ray Sensor (XRS) for the wavelength band 1-8 Å (long channel), to quantify the correlation between solar activity and jovian disk counts. We find a statistically significant Pearson’s Correlation Coefficient (PCC) of 0.9, which confirms that emitted jovian disk X-rays are predominantly governed by solar activity. We also utilise the high spatial resolution of the High Resolution Camera Instrument (HRC-I) on board the CXO to map the disk photons to their positions on Jupiter’s surface. Voronoi tessellation diagrams were constructed with the JRM09 (Juno Reference Model through Perijove 9) internal field model overlaid to identify any spatial preference of equatorial photons. After accounting for area and scattering across the curved surface of the planet, we find a preference of jovian disk emission at 2-3.5 Gauss surface magnetic field strength. This suggests that a portion of the disk X-rays may be linked to processes other than solar scattering: the spatial preference associated with magnetic field strength may imply increased precipitation from the radiation belts, as previously postulated.