Hiroshi Hasegawa

and 21 more

We present observations in Earth’s magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard collisionless reconnection, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.

Jason Shuster

and 5 more

Widely employed to model collisionless plasma phenomena occurring naturally in Earth’s magnetic environment, throughout the heliosphere, and in laboratory fusion devices, the Vlasov equation self-consistently describes the fundamental kinetic dynamics of plasma particles as they are accelerated through phase space via electric and magnetic forces. The Fast Plasma Investigation (FPI) onboard NASA’s Magnetospheric Multiscale (MMS) four-spacecraft mission sufficiently resolves the seven spatial, temporal, and velocity-space dimensions of phase space needed to directly observe terms in the Vlasov equation, as recently demonstrated by Shuster et al. [2021] in the context of electron-scale current layers at the reconnecting magnetopause. These results motivate novel exploration of the types of distinct kinetic signatures in ∂fe/∂t, v⋅∇fe, and (F/me)⋅∇vfe which are associated with the magnetic reconnection process, where F = −e(E + v×B) represents the Lorentz force on an electron, and fe specifies the electron phase space density. We apply this approach to characterize the structure of the velocity-space gradient terms in the electron Vlasov equation measured by MMS. Discussion of the uncertainties which arise when computing the velocity-space gradients of the FPI phase space densities is presented, along with initial validation of the (F/me)⋅∇vfe measurements by comparison to the ∂fe/∂t and v⋅∇fe terms. Successful measurement of the force term (F/me)⋅∇vfe in the Vlasov equation suggests a new technique for inferring spatial gradients from single spacecraft measurements which may be applied to improve the spatial resolution of the electron pressure divergence ∇⋅Pe necessary to understand the microphysics of the electron diffusion region of magnetic reconnection. Reference: Shuster, J. R., et al. (2021), Structures in the terms of the Vlasov equation observed at Earth’s magnetosphere, Nature Physics, doi:10.1038/s41567-021-01280-6.

Julia E. Stawarz

and 16 more

Decomposing the electric field (E) into the contributions from generalized Ohm’s law provides key insight into both nonlinear and dissipative dynamics across the full range of scales within a plasma. Using high-resolution, multi-spacecraft measurements of three intervals in Earth’s magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm’s law, as well as the impact of a finite electron mass, on the turbulent spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to over the accessible length scales, which extend to scales smaller than the electron inertial length at the greatest extent, with the Hall and electron pressure terms dominating at sub-ion scales. The strength of the non-ideal electron pressure contribution is stronger than expected from linear kinetic Alfvén waves and a partial anti-alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents in the turbulence. The relative contribution of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping for the intervals examined in this study. Overall, the sum of the Ohm’s law terms and measured agree to within ~20% across the observable scales. These results both confirm general expectations about the behavior of in turbulent plasmas and highlight features that should be explored further theoretically.

Daniel Bruce Graham

and 8 more

Plasmas in Earth’s outer magnetosphere, magnetosheath, and solar wind are essentially collisionless. This means particle distributions are not typically in thermodynamic equilibrium and deviate significantly from Maxwellian distributions. The deviations of these distributions can be further enhanced by plasma processes, such as shocks, turbulence, and magnetic reconnection. Such distributions can be unstable to a wide variety of kinetic plasma instabilities, which in turn modify the electron distributions. In this paper the deviations of the observed electron distributions from a bi-Maxwellian distribution function is calculated and quantified using data from the Magnetospheric Multiscale (MMS) spacecraft. A statistical study from tens of millions of electron distributions shows that the primary source of the observed non-Maxwellianity are electron distributions consisting of distinct hot and cold components in Earth’s low-density magnetosphere. This results in large non-Maxwellianities in at low densities. However, after performing a stastical study we find regions where large non-Maxwellianities are observed for a given density. Highly non-Maxwellian distributions are routinely found are Earth’s bowshock, in Earth’s outer magnetosphere, and in the electron diffusion regions of magnetic reconnection. Enhanced non-Maxwellianities are observed in the turbulent magnetosheath, but are intermittent and are not correlated with local processes. The causes of enhanced non-Maxwellianities are investigated.

Martin Ulf Lindberg

and 5 more

Key Points: 8 • The change in electron kinetic entropy per particle is calculated for 22 shock cross-9 ings having wide range of shock conditions 10 • The entropy change displays a strong dependence on the electron beta parame-11 ter 12 • The entropy change corresponds to an adiabatic index γ e = 1.595 ± 0.036 13 Corresponding author: Martin Lindberg, [email protected] 14 We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy across 15 Earth’s quasi-perpendicular bow shock. We have selected 22 shock crossings covering a 16 wide range of shock conditions. Measured distribution functions are calibrated and cor-17 rected for spacecraft potential, secondary electron contamination, lack of measurements 18 at the lowest energies and electron density measurements based on the plasma frequency 19 measurements. The change in electron kinetic entropy per particle is calculated for 22 20 shock crossings. 20 out of 22 crossings display an increase in the electron kinetic entropy 21 per particle ranging between 0.1-1.4 k B while two crossings display a slight decrease of 22-0.06 k B. We observe that the change in electron kinetic entropy, ∆S e , displays a strong 23 dependence on the change in electron temperature, ∆T e , and the upstream electron plasma 24 beta, β e. Shocks with high ∆T e are found to have high ∆S e. Shocks with low upstream 25 electron plasma betas are associated to higher ∆S e than shocks with large electron plasma 26 beta. We show that the calculated entropy per particle is strictly less than the maximum 27 state of entropy obtained using a Maxwellian distribution function. The resulting change 28 in electron kinetic entropy per particle ∆S e , density ∆n e and temperature ∆T e is used 29 to determine a value for the adiabatic index of electrons. We find that an adiabatic in-30 dex of γ e = 1.595 ± 0.036 describes the observations best.

Robert L. Lysak

and 5 more

Rungployphan Kieokaew

and 27 more

Magnetopause Kelvin-Helmholtz (KH) waves are believed to mediate solar wind plasma transport via small-scale mechanisms. Vortex-induced reconnection (VIR) was predicted in simulations and recently observed using NASA’s Magnetospheric Multiscale (MMS) mission data. Flux Transfer Events (FTEs) produced by VIR at multiple locations along the periphery of KH waves were also predicted in simulations but detailed observations were still lacking. Here we report MMS observations of an FTE-type structure in a KH wave trailing edge during KH activity on 5 May 2017 on the dawnside flank magnetopause. The structure is characterised by (1) bipolar magnetic BY variation with enhanced core field BZ and (2) enhanced total pressure with dominant magnetic pressure. The cross-section size of the FTE is found to be consistent with vortex-induced flux ropes predicted in the simulations. Unexpectedly, we observe an ion jet (VY), electron parallel heating, ion and electron density enhancements, and other signatures that can be interpreted as a reconnection exhaust at the FTE central current sheet. Moreover, pitch angle distributions of suprathermal electrons on either side of the current sheet show different properties, indicating different magnetic connectivities. This FTE-type structure may thus alternatively be interpreted as two interlaced flux tubes with reconnection at the interface as reported by Kacem et al. (2018) and Øieroset et al. (2019). The structure may be the result of interaction between two flux tubes, likely produced by multiple VIR at the KH wave trailing edge, and constitutes a new class of phenomenon induced by KH waves.