loading page

Integration of Reproducible Methods into Community Cyberinfrastructure
  • +1
  • David Tarboton,
  • Tanu Malik,
  • Jonathan Goodall,
  • Young-Don Choi
David Tarboton
Utah State University, Utah State University

Corresponding Author:[email protected]

Author Profile
Tanu Malik
DePaul University, DePaul University
Author Profile
Jonathan Goodall
University of Virginia, University of Virginia
Author Profile
Young-Don Choi
University of Virginia, University of Virginia
Author Profile


For science to reliably support new discoveries, its results must be reproducible. This has proven to be a challenge in many fields including fields that rely on computational methods as a means for supporting new discoveries. Reproducibility in these studies is particularly difficult because they require open, documented sharing of data and models and careful control of underlying hardware and software dependencies so that computational procedures executed by the original researcher are portable and can be run on different hardware or software and produce consistent results. Despite recent advances in making scientific work more findable, accessible, interoperable and reusable (FAIR), fundamental questions in the conduct of reproducible computational studies remain: Can published results be repeated in different computing environments? If yes, how similar are they to previous results? Can we further verify and build on the results by using additional data or changing computational methods? Can these changes be automatically and systematically tracked? This presentation will describe our EarthCube project to advance computational reproducibility and make it easier and more efficient for geoscientists to preserve, share, repeat and replicate scientific computations. Our approach is based on Sciunit software developed by prior EarthCube projects which encapsulates application dependencies composed of system binaries, code, data, environment and application provenance so that the resulting computational research object can be shared and re-executed on different platforms. We have deployed Sciunit within the HydroShare JupyterHub platform operated by the Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) for the hydrology research community and will present use cases that demonstrate how to preserve, share, repeat and replicate scientific results from the field of hydrologic modeling. While illustrated in the context of hydrology, the methods and tools developed as part of this project have the potential to be extended to other geoscience domains. They also have the potential to inform the reproducibility evaluation process as currently undertaken by journals and publishers.