AUTHOREA
Log in Sign Up Browse Preprints
BROWSE LOG IN SIGN UP
Mehdi Habibi
Mehdi Habibi
Joined Feb 2020

Public Documents 2
Capillary Pumping between Droplets on Superhydrophobic Surfaces
Shiva
Mohammad Charsooghi

shiva moradi

and 4 more

November 14, 2021
The famous two-balloon experiment involves two identical balloons filled up with air and connected via a hollow tube, and upon onsetting the experiment one of the balloons shrinks and the other expands. Here, we present the liquid version of that experiment. We use superhydrophobic (SHP) substrates to form spherical droplets and connect them with a capillary channel. Different droplet sizes, substrates of different hydrophobicities, and various channel pathways are investigated, and morphometric parameters of the droplets are measured through image processing. In the case of SHP substrates the pumping is from the smaller droplet to the larger one, similar to the two-balloon experiment. However, if one or both of the droplets are positioned on a normal substrate the curvature radius will indicate the direction of pumping. We interpret the results by considering the Laplace pressures and the surface tension applied by the channel at the connecting points.
Collective Behavior of Evaporating Droplets on Superhydrophobic Surfaces
Shiva
Luca Businaro

shiva moradi

and 3 more

February 13, 2020
We study the evaporation dynamics of multiple water droplets deposited in ordered arrays or randomly distributed (sprayed) on superhydrophobic substrates (SHP) and smooth silicone wafers (SW). The evaluation of mass of the droplets as a function of time shows a power-law behavior with exponent 3/2, and from the prefactor of the power-law an evaporation rate can be determined. We find that the evaporation rate on a SHP surface is slower than a normal surface for both single droplet and collection of droplets. By dividing a large droplet into more smaller ones, the evaporation rate increases and the difference between the evaporation rates on SHP and SW surfaces becomes higher. The evaporation rates depend also on the distance between the droplets and increase with increasing this distance.
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy