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Key Points:6

• Applying machine learning to observations we derive a gap-free, 7 km, daily, bi-7

decadal nitrate data-set for North-West European Shelf seas.8

• We identify nitrate-limited areas across the domain that are vulnerable to eutroph-9

ication.10

• We identify trends in nitrate concentrations corresponding to major riverine dis-11

charge changes over the last decades.12
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Abstract13

Eutrophication is a reoccurring problem in coastal regions, including the North-14

West European Shelf (NWES). By developing machine learning model from sparse ob-15

servations, we reconstruct a gap-free, 7km and daily, bi-decadal (1998-2020), data-set16

for nitrate at the NWES, allowing for much more robust analyses than the sparse ob-17

servational data. From the data-set we identify nitrate-limited coastal areas, which are18

potentially vulnerable to eutrophication. Apart from known eutrophication-problem ar-19

eas, these include additional coastal zones, which could become problematic under sub-20

optimal policy, or management changes. Furthermore, we show only a limited link be-21

tween winter nitrate and the size of phytoplankton growth the following year, suggest-22

ing winter inorganic nitrogen might not provide the best indicator for eutrophication (as23

used by OSPAR). Finally, we demonstrate that reduction of nitrate on the NWES in the24

1998-2020 period has been mostly small, with the exception of specific areas, such as the25

Bay of Biscay.26

Plain Language Summary27

Nitrate is an essential inorganic nutrient limiting phytoplankton growth in many28

marine environments. Nutrient pollution, e.g. from agriculture, can cause uncontrolled29

growth of algae (called eutrophication events), with serious consequences for marine ecosys-30

tem health. A region, essential for economy and carbon sequestration, historically im-31

pacted by such events, is the North-West European Shelf (NWES). Nitrate observations32

on the NWES are difficult to obtain and thus sparse both in time and space. We demon-33

strate that machine learning can generate, from sparse observations, a skilled, gap-free,34

bi-decadal surface nitrate data-set on a daily and 7km scale. With such a data-set we35

can address questions that would be otherwise hard to answer: (i) We show that nitrate-36

limited regions on the NWES, potentially vulnerable to eutrophication, extend beyond37

the eutrophication-problem areas already identified by the monitoring bodies (i.e. OSPAR).38

(ii) We demonstrate that bi-decadal 1998-2020 trends in coastal nitrate, responding to39

long-term policy-driven reduction in riverine discharge, are mostly modest with a notable40

exception of the Bay of Biscay. (iii) We show that winter nitrate plays relatively minor41

direct role in the phytoplankton bloom intensity the following spring, which can have42

some implications for using winter inorganic nitrogen as eutrophication indicator (as is43

relatively common).44

1 Introduction45

Nitrogen is one of the most important components of organic matter, needed in rel-46

atively large concentrations, as demonstrated by the Redfield ratios (Tett et al., 1985).47

Despite of its large abundance (the Earth’s atmosphere comprises 78% nitrogen as N2),48

it is non-trivial to obtain nitrogen in forms useful for plants. As a consequence of this,49

nitrogen is often the most limiting nutrient for plant, or algae growth, including the coastal50

marine environment (Ryther & Dunstan, 1971; Board et al., 2000). Nitrogen fixation,51

converting atmospheric nitrogen to forms useful for life, happens through various biotic52

and abiotic pathways, resulting in ammonium, nitrite and nitrate (Noxon, 1976; Hill et53

al., 1980; Postgate, 1998; Beman et al., 2008; Voss et al., 2013). Nitrate in the ocean is54

the primary nutrient for phytoplankton, with phytoplankton uptake enabling nitrogen55

flows into higher trophic levels and various detrital and dissolved forms of organic mat-56

ter. In a nitrogen-limited environment, excess nitrate concentrations, primarily originat-57

ing from agricultural runoff and industrial wastewater discharge, can stimulate harm-58

ful eutrophication events (Withers et al., 2014; Nazari-Sharabian et al., 2018). The thick59

layer of algae produced by these events may cut oxygen ventilation at the surface and60

after the algae die off and sink, the decomposers may consume vast amounts of oxygen,61

leading to marine hypoxia in the bottom part of the water column (Rabalais et al., 2002;62
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Diaz & Rosenberg, 2008). Furthermore, eutrophication events are often dominated by63

species that produce toxins that have detrimental effects on the marine ecosystem by caus-64

ing fish kills, seafood contamination, and even posing risks to human lives (Anderson et65

al., 2012). Additionally, high nitrate concentrations lead to the excessive production of66

organic matter, which, upon decomposition, increases CO2 concentration, contributing67

to ocean acidification (Doney et al., 2009). Eutrophication is a fundamental problem in68

many shelf sea and coastal areas (Rabalais et al., 2009), with nitrate monitoring and pre-69

dicting providing an essential tool informing marine management and policy.70

An important region, subject to eutrophication, is the North-West European Shelf71

(NWES). NWES is impacted by significant river inputs, notably the Thames, Rhine, and72

Loire, which introduce substantial freshwater and nutrients into the region, influencing73

salinity and water properties. Open ocean shelf exchange, especially transport of nutri-74

ents and carbon across the shelf break, play another vital role in the NWES ecosystem75

dynamics (Huthnance et al., 2009). NWES has high ecological importance due to its high76

biological productivity, underpinning significant commercial fisheries and carbon seques-77

tration (Pauly et al., 2002; Borges et al., 2006; Jahnke, 2010). During the 1980s, the NWES,78

particularly near the German Bights and the Westerschelde estuary, experienced notable79

shifts in nutrient distribution, primarily driven by increased continental nutrient inputs.80

Riverine discharges, particularly from the Rhine and Elbe, have been identified as ma-81

jor contributors to nutrient dynamics in the region (Brockmann & Eberlein, 1986; Radach,82

1992), having adverse effects on the local ecosystem. However, EU regulations set by OSPAR83

convention in 1992 substantially decreased the nitrate deposition into the NWES (Burson84

et al., 2016).85

The NWES nitrate concentrations are operationally simulated and predicted (Skákala86

et al., 2018), however, the NWES nitrate observations are too sparse to properly con-87

strain the simulated nitrate through data assimilation. The current operational NWES88

system is mainly constrained by the much more robust satellite temperature and chloro-89

phyll observations (Skákala et al., 2018, 2021, 2022) and avoids assimilating nutrients90

entirely. Furthermore, due to its univariate nature, the operational system fails to di-91

rectly constrain most of the non-assimilated variables including nutrients. Consequently,92

the nitrate reanalyses and forecasts produced by the operational system are known to93

have substantial biases, inherited from the model free run (Skákala et al., 2018, 2022).94

Although the simulated physics and chlorophyll from the reanalysis validate well against95

observations (Skákala et al., 2018, 2022), the nitrate NWES product is of more limited96

use.97

In this work we develop and validate a new bi-decadal NWES nitrate product de-98

rived from the available observations using advanced machine learning (ML) algorithms.99

The nitrate product is developed for the ocean surface, where nutrients have the poten-100

tial to most significantly drive phytoplankton growth. This is up to our knowledge the101

by far most complete and detailed observation-based sea surface nitrate data-set on the102

NWES. Unlike the NWES operational reanalysis, the data-set validates skillfully against103

the independent observations. Using our NWES nitrate product we are able to discuss104

several important questions, like the impact of winter nitrate pre-conditioning on the inter-105

annual phytoplankton variability, identify the NWES geographic areas limited by nitrate,106

or analyse trends in nitrate concentrations on the NWES. To do so, we maximise our107

reliance on the observational data and use ML and modelling to effectively fill the large108

data-gaps, either through statistics, or dynamical consistency imposed by determinis-109

tic modelling.110

2 Methodology111

The details on data and ML model architecture can be found in the Supporting112

Information (SI), Sec.1-2. Here we offer the reader just a short summary.113
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We used as the ML model a Feed-forward Neural Network (NN) designed through114

the Autokeras library using a Structured Data Regressor (Jin et al., 2019). The model115

used a number of input features for nitrate prediction: (i) structural data, such as lat-116

itude, longitude, day/month, depth and bathymetry, (ii) physical and biogeochemical117

variables obtained from the 1998-2020, daily and 7km resolution, Copernicus NWES re-118

analysis (Kay et al. (2016), for its components see also Brewin et al. (2010, 2017); Skákala119

et al. (2018); Madec et al. (2017); Bruggeman and Bolding (2014); Butenschön et al. (2016)):120

sea surface temperature (SST), total surface phytoplankton chlorophyll and carbon, to-121

tal surface net primary production, as well as surface chlorophyll of four phytoplankton122

functional types (PFTs), i.e. diatoms, microphytoplankton, nanophytoplankton and pi-123

cophytoplankton, (iii) SST observations from the Global Ocean OSTIA product (Good124

et al., 2020; Donlon et al., 2012), (iv) daily riverine discharge data from an updated ver-125

sion of the river dataset (Lenhart et al., 2010), (v) ERA-5, daily-averaged and 0.25◦, at-126

mospheric reanalysis data (Hersbach et al., 2020) for downwelling shortwave radiation127

at the ocean surface, specific humidity, temperature and dew point temperature at 2m128

above the ocean surface, total precipitation, zonal and meridional wind components at129

10m above the ocean surface (these can act as proxies for atmospheric fluxes of nitro-130

gen into the ocean (Duce et al., 2008)). All the input features were considered at the same131

times than the predicted nitrate. To avoid biases towards operational models, the NN132

model input features were always selected to be either observational data, or reanaly-133

ses of variables closely constrained by the observations. The relative importance of the134

input features was evaluated by the SHAP analysis (Linardatos et al., 2020) and is pre-135

sented in Fig.S2 of SI.136

The nitrate data were obtained from the International Council for the Exploration137

of the Sea (ICES) Dataportal https://www.ices.dk. The NN model inputs were inter-138

polated into the ICES data locations, and then the ICES data from the 1998-2015 pe-139

riod, containing 43572 relevant data-points (see Fig.S3 of SI), were used for training and140

validation of the NN model (with 80% data used for training and 20% used for valida-141

tion). Finally, the 2016-2018 ICES data, containing 2984 data-points (Fig.S3 of SI), were142

used as test data. We have also validated the model with other independent test data143

(i) from the L4 station of the Western Channel Observatory (Harris, 2010), as well as144

from (ii) five stations of the Scottish Coastal Observatory (Bresnan et al., 2016; Hind-145

son et al., 2018). Finally, after validating the NN model, we have run it for the full 1998-146

2020 period across the whole Copernicus NWES reanalysis domain (see Fig.1), taking147

Copernicus reanalysis, river and ERA-5 atmospheric forcing inputs and producing a gap-148

free bi-decadal, daily, 7 km resolution reconstruction of nitrate. This final data-set un-149

derpins the results from this study.150

3 Results and discussion151

3.1 Model validation152

Fig.2, Tab.1 and Fig.S5-S6 of SI demonstrate that the NN model shows a very good153

skill relative to the test data from ICES, L4 and the Scottish stations, and substantially154

outperforms the existing Copernicus reanalysis product for NWES nitrate.155

Because the nitrate time series are dominated by the seasonal signal, it is impor-156

tant to explore whether the model skill extends beyond predicting the local nitrate sea-157

sonal (e.g. monthly) climatology. This is much harder to validate, as one needs long term158

time-series at specific locations, which are rare. We have looked at the data from the L4159

station and five Scottish locations to analyse the ML model skill to capture interannual160

variability of nitrate. The results (shown in Tab.1 and Fig.S7 of SI) are more mixed: at161

L4 station, which has from all the locations the longest time-record and richest data-set,162

the ML model performs very well in predicting the inter-annual nitrate time-series. It163

is interesting that at the same location the reanalysis does a very poor job in doing the164
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Figure 1. The left-hand panels show the NN-reconstructed 1998-2020 average surface nitrate

concentrations for different annual seasons. The right-hand panels show the same averages for

the relative bias of the Copernicus surface nitrate reanalysis (Kay et al., 2016) with respect to

the NN-reconstructed data-set (reanalysis minus NN-reconstructed). The contours mark NWES

(bathymetry<200m).
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Figure 2. The left-hand panels show the ICES nitrate test data locations for different seasons,

with the colorbar accounting for the NN-model skill (difference between predicted and observed

nitrate: predicted - observed). The right-hand panel shows the relative differences between the

NN model and the Copernicus reanalysis skill as defined in Eq.1 of SI. It marks an NN-model

improvement (blue), or degradation (red) relative to the reanalysis, when compared (in %) to the

observed nitrate concentrations.
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Table 1. The skill of the NN model in predicting nitrate compared with the Copernicus reanal-

ysis (Kay et al., 2016). Skill is measured by bias (Eq.2 of SI, in µmol/m3), Bias-Corrected Root

Mean Squared Error (BC-RMSE, Eq.3 of SI, in µmol/m3) and Pearson correlation. The rows

represent different test data from ICES and the coastal stations (see Sec.1 and Fig.S1 of SI). The

last two rows show the skill of the NN model and the reanalysis to predict interannual, low-pass

filtered time-series (for details see Fig.S7 of SI). For the five Scottish stations we show only the

averaged result through all the stations.

NN predicted Reanalysis

Test data bias BC-RMSE R bias BC-RMSE R

ICES 0.62 2.37 0.72 3.18 6.15 0.27

L4 -1.03 1.85 0.79 0.20 2.22 0.72

Scalloway 0.98 2.1 0.8 1.08 2.76 0.64

St.Abbs -0.25 1.25 0.9 0.73 1.87 0.85

Scapa 1.52 1.52 0.86 0.33 2.13 0.69

Stonehaven -0.53 0.97 0.95 0.09 2.04 0.78

Loch Ewe 1.57 0.92 0.93 0.57 1.1 0.89

L4 interannual – 0.72 0.52 – 0.99 0.08

Scottish interannual – 0.512 -0.144 – 0.756 0.204

same (Tab.1). At the Scottish stations the ML model correctly captures the size of the165

interannual variability in nitrate, whereas struggles to capture the variability itself (the166

R metrics in Tab.1). It is however noteworthy that some of the time-series at the Scot-167

tish locations are relatively short (see Sec.1 of SI) and therefore not the most suitable168

for this type of analysis.169

Finally, the test data selected from the ICES data-set are time-separated from the170

training and validation data, but were spatially located in largely overlapping regions171

(see Fig.S3 of SI). It is therefore important to explore the possibility that, due to geo-172

graphic proximity, some ML skill has been transferred from the training/validation data173

to the test data. This is done in Fig.S8 of SI, showing how the skill evolves as a func-174

tion of spatial separation between the test data and the training/validation data. Al-175

though there is large variability in the skill, Fig.S8 shows no significant trend with spa-176

tial distance, indicating that the ML model skill does not decrease (even slightly improves)177

with the increase in spatial separation.178

3.2 The bi-decadal nitrate product, the trends, variability and impli-179

cations180

Fig.1 shows the 1998-2020 seasonally averaged NWES nitrate concentrations. It181

is clear from the spatial nitrate distributions that the ML model does not capture suf-182

ficiently the ∼7km scale variability, including the exact NWES boundaries, but it does183

reasonably capture coarse resolution nitrate distributions (see Fig.S9 of SI for compar-184

ison with the WOA product (Garcia et al., 2019)). Similarly, our analyses (including Fig.S4185

and Fig.S6) suggest that the effective temporal resolution of the NN product is ∼15-day,186

rather than daily. Fig.1 also provides seasonal comparison with the Copernicus reanal-187
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ysis product, evaluating the significant reanalysis biases throughout the 1998-2020 pe-188

riod. The Copernicus reanalysis validation gives similar results to validation from Kay189

et al. (2016), who compared the reanalysis with the North Sea Biogeochemical 1960-2014190

Climatology (Hinrichs et al., 2017).191

The winter nitrate concentrations play an important role in pre-conditioning of the192

spring bloom, which largely drives the NWES biogeochemical seasonal cycles (Huisman193

et al., 1999; He et al., 2011). The winter total inorganic nitrogen is used by OSPAR, in194

combination with other parameters, using Common Procedure (OSPAR, 2005), as an195

important indicator for NWES eutrophication and next season’s growth (Axe et al., 2017;196

Topcu & Brockmann, 2021). The hypothesis, that the intensity of spring phytoplank-197

ton bloom is directly related to the abundance of nutrients in the winter before the bloom,198

has been investigated here through nitrate. In Fig.3:A we have found only limited ev-199

idence for the relationship between the winter nitrate abundance and spring bloom in-200

tensity, i.e. statistically significant positive Pearson correlation has been found only in201

the western English Channel region, near the shelf-break in the Celtic Sea, around the202

Bay of Biscay and in the south-west of the model domain (accounting at most for 30-203

35% of explained variance). Fig.3:A also shows that these are regions where the inter-204

annual nitrate variability appears to be relatively large (10-20% of the winter average,205

Fig.3:B) and therefore capable to reveal stronger relationship with spring chlorophyll.206

For most of the domain, there is lack of clear correlation between inter-annual winter ni-207

trate and spring chlorophyll, which could be explained by the fact that both are driven208

by the interannual variability in the atmosphere (Dutkiewicz et al., 2001; Follows & Dutkiewicz,209

2001; Ueyama & Monger, 2005; Henson et al., 2006; Zhai et al., 2013). Increased winds210

can lead to more mixing and elevated surface nutrients, whilst dampening blooms by trans-211

porting phytoplankton below the Sverdrup critical depth, as proposed by popular hy-212

potheses explaining the North Atlantic spring blooms (Sverdrup, 1953; Huisman et al.,213

1999). Furthermore, there is lack of complete agreement on what are the dominant drivers214

of the spring bloom in the North Atlantic, and arguments have been raised supporting215

the view that blooms result much more from the internal ecosystem dynamics (e.g. zoo-216

plankton control over phytoplankton, Behrenfeld and Boss (2014)), compared to what217

was assumed by the traditional hypotheses focusing on physics.218

In Fig.3:C we look at correlations between inter-annual time-series of summer ni-219

trate and chlorophyll concentrations, indicating areas where phytoplankton is nitrate-220

limited (these are displayed by positive correlation). The Fig.3:C shows that chlorophyll221

is nitrate-limited mostly in the southern North Sea region, in the western English Chan-222

nel, Bay of Biscay and the south-west of the domain. These are again the regions where223

the inter-annual fluctuations of summer nitrate are relatively large (Fig.3:D). The nitrate-224

limitation in these areas means they are vulnerable to eutrophication, if excess of nu-225

trients is introduced into the water. Indeed, it is re-assuring that the eutrophication-problem226

areas, as identified by the OSPAR NWES eutrophication status reports (such as south-227

eastern North Sea, coastal areas around Brittany, Axe et al. (2017)), fall under these vul-228

nerable zones delimited in Fig.3:C. However, Fig.3:C includes also other regions, such229

as eastern coastline of Scotland, southern coast of Ireland and zones in the Irish Sea. Our230

results indicate that these additional regions could easily become problem-areas, if the231

policy and management of agriculture runoff became less effective.232

Finally Fig.4, shows 1998-2020 trends in winter nitrate across the NWES domain.233

In most of the domain no statistically significant nitrate trends have been detected, but234

some small negative trends (∼0.02 µmol/(m3.year)) were found in the Southern North235

Sea and the north-east region near the Norwegian trench. Somewhat larger (∼0.08 µmol/-236

(m3.year)) statistically significant negative trends have been found in specific locations237

of the Bay of Biscay. These results (e.g. from the Southern North Sea) are broadly con-238

sistent with what has been reported for this period in the recent OSPAR report (e.g.Axe239

et al. (2017)). These small trends follow the smaller rates of reduction in the nitrate river-240
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Figure 3. The upper left-hand panel (A) shows the Pearson correlation between the mean

winter surface nitrate concentrations and the mean (following) spring surface chlorophyll concen-

tration from the Copernicus reanalysis. The upper right-hand panel (B) shows the inter-annual

variability for winter surface nitrate (across 1998-2020, measured by the standard deviation),

relative to the 1998-2020 winter mean (in %). The bottom left panel (C) is similar to panel A,

but showing the Pearson correlation between the summer surface nitrate and the summer surface

total chlorophyll. The panel D is the same as the panel B, but showing inter-annual variability of

surface nitrate in the summer, rather than winter. The dashed contours in panels A and C show

regions where the correlation is statistically significant (p-value<0.05).
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Figure 4. Linear trends at each spatial location in the annual nitrate 1998-2020 time-series.

Dashed contours mark areas with statistically significant (p-value<0.05) trends.

ine inputs during the data period (1998-2020), compared to their large reduction in the241

1980’s and earlier 1990’s (Duarte, 2009; Brockmann et al., 2018; Greenwood et al., 2019).242

4 Conclusions243

In this work we have demonstrated that, using sparse observations across the NWES,244

ML can provide a powerful tool to reconstruct spatially complete sea surface nitrate data-245

set over 22 year period. We have shown that the data-set has substantially better match-246

ups with independent test data than the existing NWES nitrate reanalysis. Using the247

newly developed product, we have identified nitrate-limited areas potentially vulnera-248

ble to eutrophication, addressed nitrate decadal trends, and tested how successfully win-249

ter nitrate can be used as a predictor of the phytoplankton spring bloom. There are many250

other potential scientific uses of the nitrate data-set, e.g. we propose to assimilate the251

nitrate data into the NWES operational model, correcting the model significant nitrate252

biases, potentially improving its dynamics and its short-range forecasts. The model skill253

in simulating phytoplankton is known to quickly degrade with the forecast lead time (e.g.254
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Kay et al. (2016); Skákala et al. (2018)) and biases in nitrate might be one of the lead-255

ing factors in driving this.256

Several extensions of this work would be also desirable, such as utilizing ICES data257

for other biogeochemical indicators to produce ML-informed multi-variate data-sets across258

the whole NWES domain (these should include other nutrients and oxygen). ML could259

also identify valuable patterns of relationships across the multiple variables. Furthermore,260

the model developed here did not show very good skill in capturing high-frequency (daily)261

temporal variability, including extreme events. This might be due to processes provid-262

ing ocean with memory significantly longer than the daily time-scale of the product. Rep-263

resenting ocean memory by the NN model might require using time-lagged input features,264

which could substantially inflate the size and the complexity of the model. Despite of265

that, including such features into the NN model should be considered in the future. Fi-266

nally, ML tools designed to specifically capture extreme phenomena can be deployed in267

the future and extend the applicability of this work.268
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Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D.,405

Calvert, D., . . . others (2017). Nemo ocean engine.406

Nazari-Sharabian, M., Ahmad, S., & Karakouzian, M. (2018). Climate change and407

eutrophication: a short review. Engineering, Technology and Applied Science408

Research, 8 (6), 3668.409

Noxon, J. (1976). Atmospheric nitrogen fixation by lightning. Geophysical Research410

Letters, 3 (8), 463–465.411

–13–



manuscript submitted to Enter journal name here

OSPAR, C. (2005). Common procedure for the identification of the eutrophication412

status of the ospar maritime area. OSPAR Commission, 3 .413
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